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Two experiments demonstrated that the prior predictive history of a cue governs the extent to which
that cue engages in sequence learning. Using a serial reaction time task, we manipulated the predic-
tiveness of the stimulus locations (cues) with respect to the location of the stimulus on the next trial
(outcome), such that half of the cues were good predictors of their outcomes, whilst the other half
were poorer predictors. Following this, all cues were then paired with novel outcomes. Learning
about those cues that were previously established as good predictors proceeded more rapidly than
learning for those cues previously established as poor predictors. When the simple recurrent
network is modified to include a variable associability parameter, the effects are easily modelled.
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A fundamental feature of human cognition is the
ability to select the appropriate action for an
event given a set of contextual cues. In the case
of many complex real-world tasks such as driving
vehicles, athletic activity, and playing musical
instruments, these cues will take the form of a tem-
poral series, often experienced in rapid succession.
A learning system that is able to predict future
events (on the basis of past events and actions)
enables us to prepare future actions in advance
and hence, potentially, to execute these actions
more rapidly and accurately. In this article we
examine one factor that might influence the rate
of learning about a cue during a sequence learning
task—namely, the predictive history of that cue.

Sequence learning has been studied extensively
over the past 20 years using the Serial Reaction
Time (SRT) task (Nissen & Bullemer, 1987). In
this task participants respond to a target stimulus,
which can appear at one of a set number of locations
on the screen (usually 4 or 6), using corresponding
response keys. Participants are commonly informed
that the purpose of the task is to “investigate the
effect of practice on motor control” and are
instructed to respond as rapidly and as accurately
as possible each time the target stimulus appears.
Unbeknownst to participants, the movement of
the target is governed by a consistent sequence.
With practice, participants’ reaction times tend
to decrease, and, by using control trials in which
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the target makes unsequenced (often random)
movements, at least part of this increase in speed
can be attributed to learning of the underlying
sequence. Interestingly, when participants are
given a variety of verbal report and recognition
memory tests, several studies have suggested
that participants’ explicit knowledge of the under-
lying sequence often seems incomplete (e.g.,
Destrebecqz & Cleeremans, 2001; Willingham,
Nissen, & Bullemer, 1989), especially when a prob-
abilistic method of sequence generation is employed
(e.g., Jiménez, Méndez, & Cleeremans, 1996). The
extent to which the knowledge can be described as
implicit in this task has sparked a considerable
amount of research and debate within the field
(for a review, see Shanks, 2005). Whilst some
have argued in favour of implicit learning (e.g.,
Reber, 1993), others have argued that the evidence
for learning without awareness remains inconclusive
(e.g., Wilkinson & Shanks, 2004). Furthermore, it
has been suggested that the current methods for
assessing conscious knowledge lack sufficient sensi-
tivity to reveal dissociations between implicit and
explicit tests (see Shanks & St. John, 1994). The
current article is not intended to contribute directly
to this debate; we avoid making strong claims as to
whether participants can be classified as unaware
in the tasks described below. Nevertheless, it is
generally accepted that learning in the SRT task is
incidental (see e.g., Cleeremans, Destrebecqz, &
Boyer, 1998). That is, there is no directed instruc-
tion to participants to learn—participants are
asked to respond to, rather than predict, the
outcome on each trial, such that the task can be per-
formed with perfect accuracy in the absence of any
learning. Consequently there is no explicit require-
ment for participants to intentionally exploit knowl-
edge of the situation.

The extent to which implicit learning is depen-
dent on attentional resources has been studied
extensively (for a review, see Shanks, Rowland, &
Ranger, 2005). Studies typically use dual-task
conditions, in which participants are given an
attention-demanding secondary task (e.g., tone
counting) in addition to the primary SRT task.
Secondary tasks are presumed to provide sufficient
working-memory load to limit the processing

resources available for attentional learning. Hence,
evidence that learning proceeds despite these
resources being unavailable points to the presence
of automatic learning mechanisms. Such results
have been shown on several occasions (e.g.,
Cohen, Ivry, & Keele, 1990; Curran & Keele,
1993; Jiménez & Mendez, 1999); notably it
seems the complexity of the sequences used in the
primary task is a crucial factor in observing this
effect (Shanks et al., 2005).

Although most studies examining the role of
attention in sequence learning have focused on
attention as a cognitive resource, a small but
related literature has examined the extent to
which learning in the SRT task is governed by
selective attentional mechanisms. The term “selec-
tive attention” here refers to the orienting of atten-
tion towards the sequences within the task. One
common method of examining selective attention
is to present a secondary sequence in addition to
the main SRT task. For example, Mayr (1996)
arranged for the target stimulus to appear in a
sequence of locations and also as a sequence of iden-
tities (different colours), with participants directed
to respond only to the identity of the stimulus.
Having not been instructed towards any sequenced
movement of the stimulus, and despite this
sequence having no facilitatory effect on the
primary task of responding to target identity,
participants were disrupted when the secondary
location sequence was swapped to a control
sequence. Findings such as these have suggested
that learning can proceed when attention is
not directly oriented towards the to-be-learnt
material.

In this article we examine whether learning in a
standard, single-sequence learning task proceeds
uniformly, or whether attention-like selectional
mechanisms also operate within the learning of a
single sequence. In particular, we assess whether
the predictive history of a cue governs the extent
to which that cue engages the learning system and
therefore the rate of learning about that cue. Why
should certain cues in a sequence learning task be
learnt about more readily than others? It seems
reasonable to assume that this would happen
when there is a discrepancy in the validity of parts
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of a sequence. In other words, it might be the case
that fewer processing resources will be devoted to
learning about those parts of the sequence that are
deemed less beneficial for sequence learning than
to learning about those parts that are deemed
more beneficial. This suggestion that the prior
predictiveness of a cue modulates the rate of sub-
sequent learning about that cue has been confirmed
in both human contingency learning (hereafter
HCL) and animal conditioning (see Le Pelley,
2004, for a review). The general procedure in
these experiments is to pretrain a subset of cues as
good predictors of outcomes, whilst simultaneously
pretraining a subset of cues as poor predictors of
outcomes. During a second stage, in which novel
cue-outcome pairings are presented, new learning
about good and poor predictors is assessed. The
results of a number of recent studies of HCL indi-
cate that learning about cues that were pretrained as
good predictors proceeds at a faster rate than learn-
ing for cues pretrained as poor predictors (e.g.,
Kruschke & Blair, 2000; Le Pelley, Beesley, &
Suret, 2007; Le Pelley & McLaren, 2003; Le
Pelley, Suret, & Beesley, in press). Furthermore,
evidence from eye-tracking studies suggests that
participants devote less attention to cues that are
poor or redundant predictors of the outcome that
follows them than to cues that are good predictors
of this outcome (Kruschke, Kappenman, &
Hetrick, 2005; Wills, Lavric, Croft, & Hodgson,
2007; although see Hogarth, Dickinson, Austin,
Brown, & Duka, 2008).

Much debate still surrounds the fundamental
mechanisms governing HCL (see Shanks, 2007,
for a review). While some authors have proposed
that many aspects of contingency learning are
best accommodated within an associative frame-
work (Dickinson, Shanks, & Evenden, 1984; Le
Pelley, Oakeshott, & McLaren, 2005a), others
have questioned the importance of associative pro-
cesses and have instead argued that contingency
learning is invariably a product of higher order
reasoning (Beckers, De Houwer, Pineño, &
Miller, 2005; De Houwer, Vandorpe, & Beckers,
2005). Notably, these two opposing views are
divided on the issue of the cognitive resources
necessary for learning to proceed: Associative

mechanisms are typically assumed to operate auto-
matically (Squire, 1994; although see Lovibond &
Shanks, 2002), whilst higher order reasoning is
governed by controlled and effortful evaluation
of the participants’ beliefs (Lovibond, 2003).
Given the incidental nature of learning in the SRT
task, the current experiments will reveal whether
the influence of predictive history on novel learning
is contingent on directed instruction to learn. In the
absence of such instruction, and given that the rapid
mode of stimulus presentation used in the SRT task
limits the available time in which participants can
engage higher order reasoning processes (e.g.,
hypothesis testing), we would argue that the contri-
bution of such controlled reasoning processes to
learning is minimized in this task. To the extent
that this is indeed the case, the results will also
address the question of whether effects of predictive
history are driven by controlled reasoning processes
or automatic associative mechanisms.

In describing the manipulations made in our
experiments we adopt the terminology of contin-
gency learning studies, using the terms “cue” and
“outcome” to describe successive movements in
the sequence. For example, given the sequence
1234, in describing the first transition 1–2, we
would refer to element 1 as the cue and element 2
as the outcome. For the next transition, 2–3,
element 2 becomes the cue, and 3 is the outcome,
and so on. In order to manipulate predictive
history differentially amongst the cues in our task,
we use probabilistic sequences, such that a subset
of cues are relatively good predictors of their
respective outcomes, whilst a different subset are
less predictive of their respective outcomes. The
experiments presented here feature designs that
are analogous to those used in previous studies of
human contingency learning: Pretraining estab-
lishes cues as good or poor predictors of outcomes,
after which we assess the influence of this manipu-
lation on novel learning about these cues.

EXPERIMENT 1

The aim of Experiment 1 was to manipulate the
predictive history of certain elements of the
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sequence, by pretraining a subset of elements as
good predictors of the subsequent element. As
this manipulation was based largely on previous
work in both animal conditioning and human
contingency learning, we decided to assign
elements in the stimulus array to act as either
“cue” or “outcome” positions in the task. Using a
six-choice task, the four central positions (2–5)
acted as cues, whilst the two outer positions (1
and 6) acted as outcomes—this distinction was
not explicitly communicated to participants,
however. The contingencies between cues and
outcomes were manipulated such that two of the
cues were good predictors of outcomes, and two
were poor predictors of outcomes during a first
stage of training. In a subsequent second stage,
the two outer positions were removed, and partici-
pants were trained on a four-choice task in which
all of the remaining positions (two of which had
been good predictors in Stage 1 and two of
which had been poor predictors) were now
equally predictive of their respective outcomes.
We could then compare the rate of learning
about previously good and previously poor predic-
tors during Stage 2. Given previous findings relat-
ing to manipulations of predictive history in
human contingency learning, we expected that
cues that had been pretrained as good predictors
during Stage 1 would be learned about more
rapidly in Stage 2 than those pretrained as poor
predictors during Stage 1.

Method

Participants, apparatus, and stimuli
A total of 20 Cardiff University undergraduates,
who had not participated in an SRT task
before, participated for course credit or payment.
Testing was conducted in a quiet room divided
into two booths to allow 2 participants to be
tested at the same time, using PCs with 1700 TFT
monitors; participants sat approximately 80 cm
from the monitor. The experiment was run
using software written in Visual Basic. Reaction
times (hereafter RTs) were recorded with
Windows API functions QueryPerformanceCounter
and QueryPerformanceFrequency for millisecond

resolution. Responses were made with a standard
keyboard using the keys X, C, V, B, N, M. Error
signals were presented over headphones. The
stimulus array consisted of six grey response
circles (3 mm in diameter), evenly spaced 25 mm
apart in a horizontal line across the middle of the
screen. The target stimulus was a larger grey
circle, 12 mm in diameter. On each trial the
target stimulus would appear 20 mm below one of
the response circles.

Sequence generation
For all participants the outcome locations were
always in positions 1 and 6. The remaining pos-
itions (2–5) acted as cue elements. In describing
the generation of the sequence we use as an
example elements 2 and 3 to denote good predic-
tors and elements 4 and 5 to denote poor predic-
tors. Note, however, that this assignment is
merely an example and that for each participant
the four cue elements (two good predictors and
two poor predictors) were randomly assigned to
the locations 2–5 in the stimulus array.

Stage 1. Table 1 shows the conditional probabil-
ities for transitions used in Stage 1. The location
in which the target appeared on a given trial
(trial N þ 1) was determined by the position in
which it had appeared on the previous trial (trial
N). For example, if the target appeared in position
2 on trial N, then on trial N þ 1 there would be a
probability of .9 of the target appearing in position 1
and a probability of .1 of the target appearing in
position 6. Similarly, if the target appeared in
position 3 on trial N, then on trial N þ 1 there
would be a probability of .9 of the target appearing
in position 6, and a probability of .1 of the target
appearing in position 1. Thus, position 2 was a
good predictor of the target appearing in position 1
on the next trial, whilst position 3 was a good
predictor of the target appearing in position
6. When the target appeared in position 4 or 5 on
trial N, it would appear in positions 1 and 6 on
trial N þ 1 with equal probability of .5. Thus, pos-
itions 4 and 5 were relatively poor predictors of the
location of the target on the next trial. After an
outcome trial (positions 1 and 6) the location of
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the next target was selected at random from the
four cue positions (2–5), with the caveat that the
sequence could feature the same pair of locations
twice in a row (e.g., 121213), but not three times
(e.g., 121212).

Stage 2. For the last two blocks of the experiment
the two stimulus locations used as outcomes in
Stage 1 (locations 1 and 6) were removed from the
stimulus array, creating a four-choice task.
Removing outcome positions 1 and 6 should
reduce participants’ tendencies to make these well-
established outcome responses during Stage 2,
hence reducing any potential response interfer-
ence effects. Table 1 shows the conditional prob-
abilities for the Stage 2 sequence. Each of the
remaining four stimulus locations acted as both a
cue and an outcome during Stage 2. In other
words, the outcome (N þ 1) for any given contin-
gency would become the cue (N) for the next
contingency (see Results for a more detailed discus-
sion of this method of sequence generation). It is
clear from Table 1 that the possible Stage 2 tran-
sitions were entirely different from those used in
Stage 1. All cues now predicted one location with
a probability of .8 and the two other locations
with a probability of .1 each (repetitions were not
permitted)—therefore in Stage 2 all cues were
now equally valid predictors of outcomes.
Nevertheless, we continue to use the terms “good
predictors” and “poor predictors” to refer to the

way in which these sets of cues had been pretrained
in Stage 1.

Procedure
At the outset of the experiment, the instructions
contained in the Appendix were read to partici-
pants. They were then asked to position their
index fingers on keys V and B, their middle
fingers on keys C and N, and their ring fingers
on keys X and M.

The position of the target on the first six trials
of all blocks was randomly determined. On each
trial the target was displayed in one of the six pos-
itions and remained on the screen until partici-
pants made a response. When a response was
made the appropriate response circle would turn
red for 120 ms, after which the target stimulus
would disappear, the response circle would reset
to grey, and the program paused for a further
120 ms. The response–stimulus interval was
therefore 240 ms. A response in an incorrect
location produced a beep.

Stage 1 consisted of 10 blocks of 150 trials, with
a rest break of 15 s between blocks. During the rest
break between the 10th and 11th blocks, the
following message was displayed: “PLEASE
NOTE! From now on the circle will only appear
in the middle 4 positions, using keys C, V, B
and N.” This was the first time participants were
informed that the task would change in this way.
The two outermost positions (1 and 6) were

Table 1. Conditional probabilities of stimulus transitions for Stages 1 and 2 of Experiment 1

Trial N (cue)

Trial Nþ 1

(outcome)

Stage 1 Stage 2

1 2 3 4 5 6 1 2 3 4 5 6

1 .9 .1 .5 .5

2 .25 .25 .1 .1 .8

3 .25 .25 .8 .1 .1

4 .25 .25 .1 .8 .1

5 .25 .25 .1 .1 .8

6 .1 .9 .5 .5

Note: Blank probability ¼ 0. Positions 1 and 6 were removed from the task during Stage 2.
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removed from the stimulus array for the remainder
of the task. Stage 2 comprised 2 blocks of 150
trials.

Results

The first six trials of each block were not analysed,
since RTs on trials following a break tended to be
longer than those during the remainder of the
block. Mean error rates were 3% (SD ¼ 2.2) and
3.6% (SD ¼ 2.5) for Stages 1 and 2, respectively,
and RTs on these trials were excluded from
further analysis. Accuracy and RT data were also
excluded for trials following an error, as were
trials in which RTs were less than 100 ms
(0.02% of trials in Stage 1; 0.14% in Stage 2) or
greater than 1,000 ms (2.93% in Stage 1; 1.49%
in Stage 2).

During Stage 1, three types of trial were of
interest: high-probability outcomes following
good predictors (GPH; occurring with a prob-
ability of .9); low-probability outcomes following
good predictors (GPL; occurring with a prob-
ability of .1); and medium-probability outcomes
following poor predictors (PPM; occurring with
a probability of .5). For each of these trial types,
the analysed trial was that occurring on trial
N þ 1 (the outcome). For example, consider the
sequence 214631 and the conditional probabilities
for these transitions in Table 1. The first tran-
sition, 2–1, is of type GPH since outcome 1 is pre-
dicted by cue 2 with a probability of .9. The extent
to which participants have learnt that cue 2 pre-
dicts outcome 1, will be shown in the RT and
accuracy to outcome 1, and it is therefore this
trial (outcome 1) which contributes to the
average for trial type GPH. The next transition,
1–4, is from outcome location 1 to cue 4, is not
a trial of interest, and is not analysed. The next
transition, 4–6, is of trial type PPM, since
outcome 6 is predicted by cue 4 with a probability
of .5. The response to outcome 6 will therefore
contribute to the average for trial type PPM.
Transition 6–3 is from outcome location 6 to
cue 3 and is not analysed. Finally, transition 3–1
is of type GPL, as outcome 1 is predicted by cue
3 with a probability of .1. The response to

outcome 1 will contribute to the average for trial
type GPL.

Due to the low probability of an inconsistent
outcome occurring after a good predictor cue in
Stage 1, a participant would occasionally produce
no data for the GPL trial type in a given block.
There were 7 instances of missing RT data and 7
instances of missing accuracy data. In order to
conduct a full analysis of variance (ANOVA),
missing data were estimated using an average
from the two blocks immediately before and
after the block with missing data. When this was
not possible (in Blocks 1 and 10) the nearest adja-
cent data were used.

Figure 1A shows RTs across the 10 blocks of
Stage 1 for the three trial types. By the end of
Stage 1, participants are fastest on outcomes that
could be predicted with a high probability
(GPH), slowest on those that could be predicted
with lowest probability (GPL), and of intermediate
speed on those with a medium probability (PPM).
These data were subjected to repeated measures
ANOVA, with factors of outcome probability
(GPH, GPL, and PPM) and block. There was a
significant effect of outcome probability, F(2,
38) ¼ 13.49, MSE ¼ 6,237.38, p , .001, and
block, F(9, 171) ¼ 6.15, MSE ¼ 2,495.25,
p , .001. The interaction between outcome
probability and block was also significant, F(18,
342) ¼ 1.83, MSE ¼ 1,198.13, p , .05, which
suggests that participants’ sensitivity to the contin-
gencies within the sequence increased with contin-
ued exposure during Stage 1. Pairwise comparisons
between the three levels of the outcome predictabil-
ity variable revealed significant differences between
all three: GPH versus GPL trials, F(1, 19) ¼ 15.64,
MSE ¼ 21,516.03, p , .01; PPM versus GPL
trials, F(1, 19) ¼ 16.82, MSE ¼ 4,828.50,
p , .01; GPH versus PPM trials, F(1, 19) ¼
7.86, MSE ¼ 11,079.76, p , .05.

Accuracy data for Stage 1 are shown in
Figure 1B. Although accuracy offers a less sensitive
measure of learning in the SRT task, the same
ordinal relationships as those that are observed in
RTs emerge later on in Stage 1: Participants are
most accurate on GPH trials, are least accurate
on GPL trials, and show intermediate
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performance on PPM trials. These analyses were
subjected to ANOVA, which revealed no effect
of outcome probability, F , 1, but a significant
effect of block, F(9, 171) ¼ 2.37, MSE ¼ 14.08,
p , .05, indicating a general decline in accuracy
towards the end of Stage 1. The interaction was
not significant, F , 1.

During Stage 2, four trial types were of interest:
high-probability outcomes following cues that
were pretrained as good predictors in Stage 1

(GPH; occurring with a probability of .8); low-
probability outcomes following cues that were
pretrained as good predictors in Stage 1 (GPL;
occurring with a probability of .2); high-probability
outcomes following cues that were pretrained as
poor predictors in Stage 1 (PPH; occurring with
a probability of .8); low-probability outcomes fol-
lowing cues that were pretrained as poor predictors
in Stage 1 (PPL; occurring with a probability of .2).
Stage 2 analysis followed a similar method to that
outlined above for Stage 1; however, in Stage 2
all trials contributed to a trial type average.
Consider the sequence 23545 and the contingen-
cies given in Table 1. The first transition, 2–3, is
of trial type GPH, as cue 2 was pretrained as a
good predictor in Stage 1, and outcome 3 now
occurs with a probability of .8 after cue 2 (it is a
high-probability transition in Stage 2). The next
transition, 3–5, is of trial type GPL, since cue 3
was pretrained as a good predictor in Stage 1,
and outcome 5 now occurs with a probability of
.1 after cue 3 (it is a low-probability transition in
Stage 2). The next transition, 5–4, is of trial type
PPL, since cue 5 was pretrained as a poor predictor
in Stage 1, and outcome 4 occurs with a probability
of .1 after cue 5. The final transition, 4–5, is of trial
type PPH, as cue 4 was pretrained as a poor predic-
tor in Stage 1, and outcome 5 occurs with a prob-
ability of .8 after cue 4.

RT data for the two blocks of Stage 2 are shown
in Figure 2A. Overall, learning progressed rapidly
for both good and poor predictor contingencies,
as indicated by the difference in RTs to high- and
low-probability outcomes. These data were sub-
jected to repeated measures ANOVA, with
factors of prior predictiveness (i.e., the predictive-
ness of the cues in Stage 1—good vs. poor),
outcome probability (high vs. low), and block.
This revealed a significant main effect of outcome
probability, F(1, 19) ¼ 61.62, MSE ¼ 3,658.25,
p , .001, a marginally significant effect of block,
F(1, 19) ¼ 3.27, MSE ¼ 961.21, p ¼ .086, but no
main effect of prior predictiveness, F(1,
19) ¼ 1.28, MSE ¼ 1,119.14, p ¼ .27. The inter-
action of prior predictiveness and block was signifi-
cant, F(1, 19) ¼ 5.24, MSE ¼ 314.23, p , .05,
which reflects the different pattern of RTs to

Figure 1. (A) Reaction time (RT), and (B) accuracy data for Stage

1 of Experiment 1. GPH: responses to high-probability outcomes

following good predictor cues; GPL: responses to low-probability

outcomes following good predictor cues; PPM: responses to

medium-probability outcomes following poor predictor cues.
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low-probability outcomes for good and poor
predictors. No other interactions were significant:
prior predictiveness by outcome probability, F(1,
19) ¼ 1.71, MSE ¼ 484.48, p ¼ .21; outcome
probability by block, F(1, 19) ¼ 2.43, MSE ¼
909.98, p ¼ .14; nor the three-way interaction,
F(1, 19) ¼ 2.84, MSE ¼ 821.11, p ¼ .11.

In this task, learning about cue-outcome
relationships can be assessed by subtracting RTs
to high-probability outcomes following a particular
cue position from RTs to low-probability out-
comes following the same cue position. This

yields a “learning score”, which reflects how much
participants have learnt about high-probability
outcomes relative to low-probability outcomes,
and provides a means of comparing how much
has been learnt about good predictors and poor
predictors in Stage 2, unconfounded from response
interference effects. Given the differential pre-
training of good and poor predictors in Stage 1,
we might expect proactive interference to have a
larger detrimental effect on good predictor contin-
gencies than on poor predictor contingencies in
Stage 2. Consider, as an example, a participant

Figure 2. (A) Reaction time (RT), and (B) accuracy data for Stage 2 of Experiment 1, with data plotted as learning scores—the difference

between responses to high- and low-probability outcomes—in Panels (C) and (D), respectively. GPH: responses to high-probability outcomes

following cues pretrained as good predictors in Stage 1; GPL: responses to low-probability outcomes following cues pretrained as good predictors

in Stage 1; PPH: responses to high-probability outcomes following cues pretrained as poor predictors in Stage 1; PPL: responses to low-

probability outcomes following cues pretrained as poor predictors in Stage 1.
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whose mapping of elements 1 to 6 (shown in
Table 1) directly translates onto the stimulus
locations 1 to 6 on the screen (e.g., element 1
maps to key X, element 2 to key C, and so on).
Suppose that during Stage 1 this participant has
learnt that cue 2 is very likely to be followed by
outcome 1—that is, this participant has learnt to
prepare the response of pressing the X key on the
trial following cue 2. In Stage 2 all cue-outcome
contingencies are changed, such that cue location
2 is now usually followed by location 3. This par-
ticipant’s previously learnt tendency to prepare an
X response following location 2 is therefore now
inappropriate and might be expected to interfere
with appropriate responding on this trial (pressing
the V key). This can be compared to previously
poor predictors, for which participants will not
have developed such strong response tendencies
during Stage 1, and hence for which there will be
less interference during Stage 2. Consequently,
during Stage 2, response interference could poten-
tially mask any advantage that might exist for
learning the new high-probability responses for
those cues previously trained as good predictors.
However, any proactive interference affecting
responding during Stage 2 will have an equivalent
effect on responses made to both high- and low-
probability outcomes. Taking the difference
between these two trial types as our measure of
learning for the Stage 2 contingencies therefore
allows us to subtract out any influence of response
interference, such that any difference observed
will reflect a difference in the rate of learning
about good and poor predictor cues.

While the nonsignificant interaction of prior
predictiveness with outcome probability in the
ANOVA reported above indicates that this differ-
ence between RTs to high- and low-probability
outcomes does not differ significantly between
good and poor predictors when assessed across the
whole of Stage 2 training, a finer grained analysis
based on learning scores reveals a significant, yet
short-lived, influence of prior predictiveness.
Figure 2C plots the difference between RTs on
high- and low-probability outcomes (i.e., the learn-
ing score) for both good and poor predictors. The
learning score data were subjected to ANOVA

with factors of cue and block. There was no main
effect of cue, F(1, 19) ¼ 1.70, MSE ¼ 969.37, p ¼
.21, nor block, F(1, 19) ¼ 2.43, MSE ¼ 1,821.01,
p ¼ .14, and no interaction, F(1, 19)¼ 2.84, MSE
¼ 1,642.74, p ¼ .11. Preplanned tests of simple
effects revealed a significant effect of cue in Block
1, F(1, 19) ¼ 5.10, MSE ¼ 1,163.91, p , .05, but
not in Block 2, F , 1. Consistent with our exper-
imental hypothesis, the significant difference in
Block 1 indicates that learning about good predictor
cues was initially at an advantage during Stage 2
learning.

Accuracy data for Stage 2 are shown in
Figure 2B. Again, the data show that acquisition
progresses rapidly in Stage 2, with accuracy on
high-probability outcomes greater than that on
low-probability outcomes. These data were again
subjected to ANOVA with factors of prior predic-
tiveness, outcome probability, and block. This
revealed a significant effect of outcome probability,
F(1, 19) ¼ 24.18, MSE ¼ 111.59, p , .001, but
no effect of prior predictiveness, F , 1, nor
block, F(1, 19) ¼ 2.41, MSE ¼ 49.93, p ¼ .14.
There were no significant interactions between
any of the factors: outcome probability by prior
predictiveness, F(1, 19) ¼ 1.18, MSE ¼ 42.36,
p ¼ .29; outcome probability by block, F(1,
19) ¼ 2.45, MSE ¼ 51.52, p ¼ .13; prior predic-
tiveness by block, F , 1; nor the three-way
interaction, F , 1. Figure 2D shows learning
scores for accuracy data (accuracy on high-prob-
ability outcomes minus accuracy on low-probability
outcomes). These data were subjected to ANOVA,
which revealed no main effect of cue, F(1,
19) ¼ 1.21, MSE ¼ 85.64, p ¼ .29, nor of block,
F(1, 19) ¼ 2.41, MSE ¼ 103.17, p ¼ .14, and no
interaction, F , 1. Preplanned tests of simple
effects found no significant effect of cue in Block
1 or Block 2, maximum F(1, 19) ¼ 1.50, p ¼ .24.

Discussion

Experiment 1 examined whether incidentally pre-
training cues as either good or poor predictors of
outcomes has an effect on the subsequent rate of
learning about these cues. By the end of Stage 1,
the pattern of participants’ responses reflected the
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different outcome probabilities within the
sequence: Our manipulation of predictiveness was
successful. In Stage 2 the contingencies between
the elements changed to entirely novel transitions
that were not pretrained during Stage 1. All cues
were now equally predictive of their respective
outcomes. Nevertheless, those cues that were pre-
viously good predictors in Stage 1 were learnt
about faster during the initial part of Stage 2
than were those that were previously poor predic-
tors. By the end of Stage 2, learning about poor
predictor cues was as great as learning about good
predictors. This is presumably because learning of
the good predictors approached asymptote by the
end of Block 1, allowing learning about poor pre-
dictors to “catch up” during Block 2. The results
of Experiment 1 indicate that predictive history
influences the rate at which cues are learnt about
in sequence learning, and, in line with previous
work in HCL (e.g., Le Pelley & McLaren,
2003), our findings suggest that pretraining cues
as good predictors facilitates the acquisition of
novel outcome associations for these cues relative
to those pretrained as poorer predictors.

Although Experiment 1 provided some evidence
for an effect of prior predictiveness on new learning
in the SRT task, this evidence was restricted to
an analysis on the short-lived effect in Block 1.
Experiment 2 was therefore conducted as a replica-
tion of this novel effect, using a design that aimed
to increase the chances of observing a greater effect
of prior predictiveness on Stage 2 learning.

EXPERIMENT 2

The design of Experiment 1 was analogous to pre-
vious studies examining the influence of predictive
history in animal conditioning and HCL (e.g., Le
Pelley & McLaren, 2003), in that certain stimuli
acted as cues, whilst others acted as outcomes. It
is unclear, however, whether the effect of predic-
tiveness observed in Experiment 1 is limited to
this arrangement of designated cue and outcome
positions. In Experiment 2 we sought to replicate
the effect of predictive history using a six-choice
SRT task in both stages of the experiment, with

stimulus locations acting as both “cues” and “out-
comes” throughout.

Using a six-choice SRT task in both stages of
the experiment also allowed us to address
another factor that might potentially have influ-
enced the results of Experiment 1—namely, the
change in context between Stages 1 and 2. That
is, the removal of the two “outcome” positions
following Stage 1 of Experiment 1 presumably
made it clear to participants that the structure of
the task, and the movements of the target, would
be different in Stage 2. A similar argument
applies to most of the previous studies of predictive
history effects in HCL (e.g., Bonardi, Graham,
Hall, & Mitchell, 2005; Le Pelley et al., 2007;
Le Pelley & McLaren, 2003), in which there is
an explicit change in context between the first
phase of the experiment in which predictiveness
is established and the second phase in which the
impact of this predictive history on novel learning
is assessed. In contrast, in many studies of learned
predictiveness effects in animals the same (or very
similar) cues and outcomes occur throughout the
experiment (e.g., Holland, 1984; Mackintosh,
1969, 1973). This raises the possibility that
effects of predictive history observed in human
learning rely on, or are in some way influenced
by, the change of context occurring before the
critical learning phase. Perhaps, for example, this
change in task signals that the cues are now to
be involved in different relationships and therefore
leads participants to generalize their previous
learning about the predictiveness of the different
cues in a way that would not occur if such explicit
evidence of a change were not provided. In order
to test this suggestion, in Experiment 2 there
was no change in context between the two
phases of the experiment. That is, both stages
involved a six-choice SRT task with the same
stimuli, and therefore participants were given no
indication that the structure of the task had
changed in any way.

While it is at least theoretically possible that a
change in context might be required to generate
an effect of predictive history on novel learning,
it seems unlikely that this would be the case.
Studies that have investigated this issue
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systematically in both animals and humans typi-
cally find that a change in context will weaken,
rather than enhance, the effect of predictive
history (e.g., Lovibond, Preston, & Mackintosh,
1984; Nelson & Sanjuan, 2006). Such findings
have intuitive plausibility—the greater the differ-
ence between the two phases of an experiment,
the less likely participants might be to transfer
what they have learnt during the first phase to
what they are about to learn in the second. To
the extent that this applies to the current learning
preparation, we would expect, if anything, the
removal of an explicit context change in
Experiment 2 to enhance the influence of predic-
tive history on novel learning (all other things
being equal).

Method

Participants, apparatus, and stimuli
A new sample of 16 Cardiff University under-
graduates participated for course credit or
payment. All apparatus and stimuli were identical
to those used in Experiment 1.

Sequence generation
All locations were used as cue and outcome
elements. In describing the generation of the
sequence we use as an example elements 1, 2,
and 3 to denote good predictors and elements 4,
5, and 6 to denote poor predictors. Note,

however, that for each participant all six cue
elements (three good predictors and three poor
predictors) were randomly assigned to the
locations 1–6 of the stimulus array.

Stage 1. Table 2 shows the conditional probabil-
ities for the sequence used in Stage 1. Positions
1, 2, and 3 were good predictors of their respective
outcomes, as all of these positions predicted the
location of the target on the following trial with
relatively high probability (.9). In contrast,
positions 4, 5, and 6 were poor predictors as the
position of the target on the following trial could
occur in one of two positions with equal prob-
ability (.5).

The possible outcomes that could follow each
of the good predictor cues were always themselves
poor predictor cues; each poor predictor cue
location acted as a high-probability outcome (.9)
for one good predictor and a low-probability
outcome (.1) for a different good predictor.
Similarly, the possible outcomes that could
follow each of the poor predictor cues were them-
selves always good predictors; each good predictor
cue location acted as a medium-probability
outcome (.5) for two different poor predictors.
This allowed us to effectively double the number
of trials of each contingency as compared to
Experiment 1, in which half the trials involved
transitions from outcome positions (1 and 6) to
cue positions (2–5), which were not analysed.

Table 2. Conditional probabilities of stimulus transitions for Stages 1 and 2 of Experiment 2

Trial N (cue)

Trial Nþ 1

(outcome)

Stage 1 Stage 2

1 2 3 4 5 6 1 2 3 4 5 6

1 .5 .5 .1 .8 .1

2 .5 .5 .8 .1 .1

3 .5 .5 .1 .1 .8

4 .9 .1 .8 .1 .1

5 .1 .9 .1 .8 .1

6 .1 .9 .1 .1 .8

Note: Blank probability ¼ 0.

118 THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2010, 63 (1)

BEESLEY AND LE PELLEY

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
C
o
l
l
e
g
e
 
L
o
n
d
o
n
]
 
A
t
:
 
1
1
:
4
2
 
6
 
J
a
n
u
a
r
y
 
2
0
1
0



Stage 2. Table 2 shows the conditional probabilities
for the sequence used in Stage 2. Comparing the
conditional probabilities for Stages 1 and 2 in
Table 2 it is clear that all Stage 2 transitions were
different from those used in Stage 1. As in Stage
2 of Experiment 1, all of the locations now
predicted one location with a probability of .8
and two other locations with a probability of .1
each.

Procedure
The procedure was identical to that used in
Experiment 1, with the exception that as Stage 2
also used a six-choice task, the notice displayed
during the rest break following Block 10 in
Experiment 1 was omitted. Participants did not
receive any indication that the task would change
in any way during the experiment. In order to
assess whether the change between stages was
particularly salient, at the end of the experiment
participants were informed that the movement of
the target had been sequenced and were asked:
“If you did notice a pattern, did you feel this
pattern changed during the experiment? If so, at
what point did it change and in what way?”
Participants typed their answers into a text box
on the screen.

Results

Trials were excluded on the same basis as in
Experiment 1. One participant produced a mean
RT of 1,230 ms (median RT of 1,094 ms).
Given that the majority of this participant’s data
would have been excluded on our RT criterion,
this participant was excluded from all analyses
presented here. For the remaining participants,
mean error rates were 3.1% (SD ¼ 1.7) and 4.6%
(SD ¼ 2.8) for Stages 1 and 2, respectively. As in
Experiment 1, trials were excluded if RTs were
less than 100 ms (0.12% of trials in Stage 1;
0.11% in Stage 2) or greater than 1,000 ms
(3.70% in Stage 1; 3.29% in Stage 2).

Trials of interest in Stage 1 were high-prob-
ability outcomes following good predictor cues
(GPH), low-probability outcomes following good
predictor cues (GPL), and medium-probability

outcomes following poor predictor cues (PPM).
Since more trials now contributed to each variable,
there were no missing data in the current experi-
ment. Figure 3A shows the RT data for Stage
1. Participants’ responses reflected the differing
probabilities of the three outcomes: fastest for
GPH trials, slowest for GPL trials, and of inter-
mediate speed for PPM trials. These data were
subjected to repeated measures ANOVA with
factors of outcome probability (high, medium, and

Figure 3. (A) Reaction time (RT), and (B) accuracy data for Stage

1 of Experiment 2. GPH: responses to high-probability outcomes

following good predictor cues; GPL: responses to low-probability

outcomes following good predictor cues; PPM: responses to

medium-probability outcomes following poor predictor cues.
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low) and block, which revealed significant effects
of outcome probability, F(2, 28) ¼ 23.10,
MSE ¼ 17,947.07, p , .001, and block, F(9,
126)¼ 17.98, MSE ¼ 1,996.76, p , .001, and a
significant interaction, F(18, 252) ¼ 4.15,
MSE ¼ 1,063.49, p , .001. Pairwise comparisons
between the three levels of the outcome probability
variable revealed significant differences in RT
between all three: GPH versus GPL trials, F(1,
14) ¼ 29.45, MSE ¼ 56,068.28, p , .001; PPM
versus GPL trials, F(1, 14) ¼ 23.13,
MSE ¼ 22,095.97, p , .001; GPH versus PPM
trials, F(1, 14) ¼ 11.01, MSE ¼ 29,518.18,
p , .01.

Figure 3B shows the accuracy data for Stage
1. In line with the findings in RTs, participants
were most accurate on GPH trials, least accurate
on GPL trials, and of intermediate accuracy for
PPM trials. ANOVA revealed a significant effect
of outcome probability, F(2, 28) ¼ 16.77,
MSE ¼ 145.86, p , .001, and block, F(9,
126) ¼ 3.33, MSE ¼ 42.08, p , .01, and a signifi-
cant interaction, F(18, 252) ¼ 2.89, MSE ¼
40.37, p , .001. Pairwise comparisons between
the three levels of the outcome probability variable
revealed significant differences in response accu-
racy between all three: GPH versus GPL trials,
F(1, 14) ¼ 19.61, MSE ¼ 450.27, p , .01; PPM
versus GPL trials, F(1, 14)¼ 14.25,
MSE ¼ 381.66, p , .01; GPH versus PPM trials,
F(1, 14)¼ 9.45, MSE ¼ 43.21, p , .01.

It is clear from both the RT and accuracy data
that participants were sensitive to the varying
levels of predictiveness of the cues. Although
Experiment 2 had fewer participants than
Experiment 1, the significance levels achieved in
most comparisons were greater. This is almost
certainly due to an increase in the number of
cue-outcome pairings, resulting in greater training
of the Stage 1 contingencies, as well as a reduction
in the variance due to an increase in the number of
sampled trials per data point.

The RT data for Stage 2, shown in Figure 4A,
were analysed as in Experiment 1. As previously,
trial types GPH and GPL refer to high- and
low-probability outcomes, respectively, following
cues that were pretrained as good predictors

during Stage 1. Similarly, trial types PPH and
PPL refer to high- and low-probability outcomes,
respectively, following cues that were pretrained
as poor predictors during Stage 1. These data
were subjected to repeated measures ANOVA
with factors of prior predictiveness (good vs.
poor), outcome probability (high vs. low), and
block. The main effect of outcome probability was
significant, F(1, 14) ¼ 10.45, MSE ¼ 2,628.55,
p , .01, indicating faster RTs to high- than to
low-probability outcomes. There was no main
effect of prior predictiveness, F , 1, nor of block,
F(1, 14) ¼ 2.13, MSE ¼ 1,795.69, p ¼ .17.
Importantly, there was a significant interaction
between prior predictiveness and outcome prob-
ability, F(1, 14) ¼ 5.60, MSE ¼ 2,269.39,
p , .05, which indicates that the difference in RT
between high- and low-probability outcomes was
greater for the good predictor contingencies than
for the poor predictor contingencies. The inter-
action between outcome probability and block
was significant, F(1, 14) ¼ 15.86, MSE ¼ 351.70,
p , .01, which indicates that overall learning was
greater in Block 2 than in Block 1. The interaction
between prior predictiveness and block was not
significant, F , 1, nor was the three-way inter-
action, F(1, 14) ¼ 1.29, MSE ¼ 549.83, p ¼ .28.

Figure 4C plots RT data as learning scores (RTs
on low-probability trials minus RTs on high-prob-
ability trials) for good and poor predictor contin-
gencies. These data were subjected to ANOVA
with factors of prior predictiveness and block.
This revealed a significant effect of prior predictive-
ness, F(1, 14) ¼ 5.60, MSE ¼ 4,538.79, p , .05,
and of block, F(1, 14) ¼ 15.85, MSE ¼ 703.90,
p , .01, but no significant interaction, F(1,
14) ¼ 1.29, MSE ¼ 1,099.66, p ¼ .28. Planned
tests of simple effects revealed a significant effect
of cue both in Block 1, F(1, 14) ¼ 4.82,
MSE ¼ 4,030.36, p , .05, and in Block 2, F(1,
14) ¼ 4.60, MSE ¼ 1,608.09, p , .05.

Figure 4B shows accuracy data for Stage 2.
These data were again subjected to ANOVA
with factors of prior predictiveness, outcome
probability, and block. This revealed a main
effect of outcome probability, F(1, 14) ¼ 5.38,
MSE ¼ 57.75, p , .05, which indicates that
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participants were more accurate on high-prob-
ability outcomes than on low-probability out-
comes. There was also a main effect of block,
F(1, 14) ¼ 9.47, MSE ¼ 29.56, p , .01, indicat-
ing that accuracy decreased from Block 1 to
Block 2, driven largely by a decrease in accuracy
on low-probability outcomes. There was a signifi-
cant interaction between outcome probability and
block, F(1, 14) ¼ 6.49, MSE ¼ 61.87, p , .05,
indicating stronger evidence for learning in
Block 2 than in Block 1. Prior predictiveness

did not exert a significant main effect or interact
with any other variable, maximum F(1,
14) ¼ 1.51, p ¼ .24.

Figure 4D shows learning scores for accuracy
(accuracy on high-probability outcomes minus
accuracy on low-probability outcomes). These
data were subjected to ANOVA, which revealed
no main effect of cue, F , 1, a significant main
effect of block, F(1, 14) ¼ 6.47, MSE ¼ 123.72,
p , .05, and no interaction, F(1, 14) ¼ 1.51,
MSE ¼ 96.04, p ¼ .24. Tests of simple effects

Figure 4. (A) Reaction time (RT), and (B) accuracy data for Stage 2 of Experiment 2, with data plotted as learning scores—the difference

between responses to high- and low-probability outcomes—in Panels (C) and (D), respectively. GPH: responses to high-probability outcomes

following cues pretrained as good predictors in Stage 1; GPL: responses to low-probability outcomes following cues pretrained as good predictors

in Stage 1; PPH: responses to high-probability outcomes following cues pretrained as poor predictors in Stage 1; PPL: responses to low-

probability outcomes following cues pretrained as poor predictors in Stage 1.

THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2010, 63 (1) 121

SEQUENCE LEARNING AND ASSOCIABILITY

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
C
o
l
l
e
g
e
 
L
o
n
d
o
n
]
 
A
t
:
 
1
1
:
4
2
 
6
 
J
a
n
u
a
r
y
 
2
0
1
0



found no significant effect of cue in either block,
maximum F(1, 14) ¼ 2.07, p ¼ .17.

Of the 15 participants, only 5 reported that they
felt the sequence changed in some way during the
experiment. Of these participants, 2 indicated that
they felt the sequence changed halfway through
the experiment, 1 that it changed every block, 1
that it changed before the last four blocks, and 1
that it “changed back to random”, but they did
not specify when. These data suggest that the
change in the sequence structure for the last two
blocks of the experiment went unnoticed by
many of, if not all, the participants.

Discussion

The results of Experiment 2 are similar to those
of Experiment 1: The rate at which sequence
learning proceeded for a given cue was dependent
on the predictive history of that cue. The removal
in Experiment 2 of any explicit change in context
between Stages 1 and 2 indicates that such a
change is not necessary for an effect of predictive-
ness to be observed. Indeed, verbal report data
suggest that the change in the task structure
between Stages 1 and 2 went unnoticed by
most, if not all, participants. Whilst it might be
argued that participants would not have kept a
running count of the block number, since the
questions appeared immediately after Stage 2, it
seems unlikely that participants would not have
been able to report that the task changed during
the last two blocks if this change had been
noticed.

Unlike in Experiment 1, the facilitation in
Stage 2 learning for those cues trained as good pre-
dictors in Stage 1 was evident for the duration of
Stage 2. As suggested earlier, it is possible that
the longer lived influence of prior predictiveness
in Experiment 2 was a consequence of the lack
of an explicit context change as compared to
Experiment 1 (cf. Lovibond et al., 1984; Nelson
& Sanjuan, 2006) leading to greater transfer
between the two stages in Experiment 2. An
alternative possibility, however, makes reference
to the fact that in Experiment 2 all of the positions
in the stimulus array acted as both cues and

outcomes. Consequently, participants experienced
twice as many presentations of both the good and
poor predictor contingencies in Stage 1 as they
did in the Stage 1 procedure used in Experiment
1 (see Method). It is therefore possible that this
difference resulted in the apparently greater effect
of predictiveness on Stage 2 learning observed in
Experiment 2. However, our current results do
not allow us to decide between these alternatives.

Although we observed greater learning about
good predictor cues over poor predictor cues in
both Experiments 1 and 2, comparison of
Figure 2A with Figure 4A reveals that the
pattern of data is slightly different between the
two demonstrations of this effect. In Experiment
1, the effect was driven entirely by slower
RTs to low-probability outcomes following
good predictor cues than to those following
poor predictor cues during Block 1 of Stage
2. However, in Experiment 2 the effect was
driven largely by faster RTs to high-probability
outcomes following good predictor cues than fol-
lowing poor predictor cues. The most likely
explanation for this difference in the pattern of
results between experiments is a floor effect
in RTs to high-probability outcomes in
Experiment 1. In Stage 2 of Experiment 1
the outcome positions were removed from the
screen, which we had hoped would reduce the
impact of direct interference from Stage 1 associ-
ations on learning of, and responding to, the new
cue-outcome contingencies of Stage 2. This
seems to have been successful: Figures 1A and
2A show that RTs to high-probability outcomes
at the end of Stage 1 (438 ms) are similar
to RTs to the new high-probability outcomes in
Stage 2 (427 ms). In addition, reducing the
number of possible target locations will reduce
response competition and hence tend to produce
faster RTs. Although we see a small decrease in
RTs to high-probability outcomes across Stage
2 training, it is likely that floor effects are
masking any potential RT benefit for high-
probability outcomes following good predictor
cues. In other words, while it is likely that
RTs for a four-choice SRT task can improve
beyond 427 ms, we would suggest that the
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likelihood of observing differences between high-
probability outcomes at this level is impaired by
floor effects.

Participants in Experiment 2 received twice as
many cue-outcome pairings in Stage 1 as did
those in Experiment 1, resulting in more robust
learning of the Stage 1 contingencies. It is likely
that this would have led to greater interference
on Stage 2 responding, while the continued use
of a six-choice SRT task in Stage 2 will also main-
tain a high level of response competition.
Consequently we would expect to see a general
slowing of RTs at the outset of Stage 2, and this
was indeed observed in the results of Experiment
2—there is a clear increase in RT to high-prob-
ability outcomes between the final block of Stage
1 (Figure 3A; 440 ms) and the first block of
Stage 2 (Figure 4A; 560 ms). Given that Stage 2
RTs have moved away from floor levels, this
allows scope to observe an advantage for good pre-
dictor cues over poor predictor cues in RTs to
high-probability outcomes.

The data from Experiments 1 and 2 are consist-
ent with recent findings in human contingency
learning studies employing analogous designs
(e.g., Le Pelley et al., 2007; Le Pelley &
McLaren, 2003; Le Pelley, Oakeshott, Wills, &
McLaren, 2005b). Le Pelley (2004) has suggested
that “learned predictiveness” effects such as these
can be accommodated by the associative model
proposed by Mackintosh (1975; see also
Kruschke, 2001). Within this model, learning
about each cue is modulated by a cue-specific
associability parameter (sometimes referred to as
an attentional parameter), which influences
the extent to which a cue is able to engage the
learning process. On each trial, the associability
of a cue changes as a function of that cue’s
predictiveness, with consistent predictors main-
taining a higher associability than inconsistent
predictors.

It is easy to see how this model could account
for the results of Experiments 1 and 2. During
Stage 1 those cues trained as good predictors will
maintain high associability, whilst the associability
of the poor predictors will fall. Consequently
learning about those stimuli that were previously

trained as good predictors will proceed more
rapidly during Stage 2, with the difference in
learning rate dependent on the extent to which
the associability of these cues has diverged
during Stage 1.

In the next section we examine the extent to
which the simple recurrent network (SRN;
Elman, 1990)—an associative model of sequence
learning—can accommodate the results of
Experiment 2. In particular, following the
models of Mackintosh (1975) and Le Pelley
(2004), we examine whether modifying the SRN
to include cue-specific learning rate parameters
improves its ability to capture the influence of
prior predictiveness on sequence learning.

Simple recurrent network simulation
of Experiment 2

The SRN (Elman, 1990) has been shown to be an
accurate model of human sequence learning and is
able to capture robust effects in the artificial
grammar learning and SRT paradigms (e.g.,
Cleeremans, 1993; Cleeremans & McClelland,
1991). The SRN is a multilayer connectionist
network that is trained with the back-propagation
algorithm (Rumelhart, Hinton, & Williams,
1986) to minimize the error between “network-
produced” and “target” output patterns. In the
case of sequence learning, on each trial the
network is presented with a pattern across
the input units: One input unit is “turned on” to
represent the position of the target stimulus on
trial N. The pattern of activation across the
output units is taken as the network’s prediction
as to the position of the target stimulus on trial
N þ 1, which is evaluated against the actual pos-
ition on trial N þ 1. The characteristic that sets
the SRN apart from other multilayer connectionist
models is the recurrent loop, which allows the
network to copy its internal representation (the
current activation pattern across the hidden units)
onto a set of “context” units, which are then fed
back into the network at the next time step. In
doing so, the model uses not only the information
from the present trial in order to learn, but
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an integrated representation of several previous
trials.1

Our network functioned in much the same way
as that described by Elman (1990): a back-propa-
gation multilayer network with a recurrent loop.
On each trial, the activation of one input unit
was set to 1, and all other input units were set to
0. The activation was then fed forward to the
hidden units by calculating the sum of all products
of input activations and their respective connection
strengths with each hidden unit. Thus, for hidden
unit h:

inh ¼ Bh þ
XI

i¼1

whi � ai ð1Þ

where inh is the input for hidden unit h; Bh is the bias
associated with hidden unit h; whi is the weight of
the connection between hidden unit h and input
unit i; ai is the activation of input unit i; and I is
the total number of input units. This input is then
transformed into an activation value for hidden
unit h, by the activation function given in
Rumelhart et al. (1986):

ah ¼
1

1þ e�inh
ð2Þ

The input to, and activation of, the output units is
calculated in much the same way as that of the
hidden units, such that for output unit o:

ino ¼
XH

h¼1

woh � ah ð3Þ

ao ¼
1

1þ e�ino
ð4Þ

where ino is the input for output unit o; woh is the
weighted connection between output unit o and
hidden unit h; ah is the activation of hidden unit
h; and H is the total number of hidden units in
the network.

When applied to sequence learning, the target
output on each trial is the next element in the
sequence. The accuracy of the model in selecting
the next element was calculated as the activation
of the target output unit divided by the total
activation of all output units, commonly referred
to as the Luce choice ratio (hereafter LCR;
Luce, 1959).

Target values for “active” and “inactive” stimu-
lus positions were set at .9 and .1, respectively.
Although only one target stimulus position
(output unit) is “active” at any one time, values
of 1 and 0 cannot be reached without infinitely
large weights and so effectively cannot be achieved
(Rumelhart et al. 1986). As the model learns the
sequence it will get better at predicting the appro-
priate output for each input, and hence LCR
values should approach 1 (corresponding to high
activation of the target output unit and low acti-
vation of the nontarget outputs). We might
expect that LCR will be inversely related to RT;
hence figures showing SRN performance are
plotted using (1 – LCR).

Following each response made by the network,
the error of each output unit is back-propagated
through the network to update the weights

1 The context loop in the SRN allows the model to learn sequences containing cue-outcome contingencies that span several inter-

vening elements (see Cleeremans, 1993), but since the sequences used in the current experiments are created from exclusively first-

order transitions, prima facie this functionality of the model might seem redundant. However, with respect to sequence learning, the

SRN has received more attention than any other model and therefore seems the most appropriate model to apply to these data.

Moreover, including context units will only provide a model with greater flexibility, thus allowing for a better assessment of the

ability of a model that does not allow variable cue processing to predict our empirical data. In fact, our parameter search included

parameter sets with very low learning rates (e.g., .01) for context–hidden unit connections. Thus situations in which the possible

contribution of the context units to learning is minimized (i.e., situations in which the SRN will behave in a manner similar to a

standard back-propagation network; Rumelhart, Hinton, & Williams, 1986) form a subset of our simulation data. Finally, although

second-order information is no more useful than first-order information for the learning of these sequences, this is not to say that

second-order information is not present in these sequences. For instance, given the transitions in Table 2, sequences such as 1–2–4

(GPH transition followed by GPH transition) will be more common than sequences such as 5–2–4 (PPL transition followed by

GPH transition).
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between each layer of units. Error terms for output
and hidden units were calculated as follows:

do ¼ (to � ao) � (1� ao) � ao ð5Þ

dh ¼
Xo¼O

o¼1

do � woh

 !
� (1� ah) � ah ð6Þ

where do and dh refer to the error on output unit o
and hidden unit h, respectively. These errors were
then used to update the weights and biases in the
network using the generalized delta rule
(Rumelhart et al., 1986):

DWoh ¼ LRoh � do � ah ð7Þ

DWhi ¼ LRhi � dh � ai ð8Þ

DWhc ¼ LRhc � dh � ac ð9Þ

DBh ¼ LRb � dh ð10Þ

where LR denotes a learning rate parameter. Note
that in our implementation of the model, indepen-
dent learning rate parameters were used for the
three sets of weights and for the hidden unit
biases (LRoh, LRhi, LRhc, and LRb). Given that
the aim of these simulations was to establish
whether a “standard” SRN model (that is, an
SRN that does not contain an additional associa-
bility parameter) could feasibly capture the
effects of predictive history observed in
Experiments 1 and 2, we wished to specify as
few constraints on the model as possible. Hence,
if it is possible, by whatever means, for this
model to account for the effects of predictive
history observed empirically, this approach of pro-
viding the greatest possible flexibility gives the best
chance of detecting this ability.

The model was examined using the sequences
from Experiment 2 as this produced a significant
predictiveness effect across the whole of Stage
2. In searching for parameters that would
produce the observed pattern of data we varied
learning rate values (which could be set at .01,
.05, .1, .3, .5, or .7) and the number of hidden

units (3, 15, 30, or 50). Given that each of the
four independent learning rates within the
network could take one of six values, the simu-
lation space produced 5,184 parameter sets. For
each of these sets, the model was trained using
the exact sequences given to the 15 experimental
participants of Experiment 2, in 100 separate
simulated experiments, resulting in 1,500 simu-
lated participants for each parameter set. For
each simulated participant, all weights within the
network were initialized with random values
between–.5 and .5.

The model’s performance was evaluated by
examining the average performance across the
100 simulated experiments for each parameter
set. For each set we first assessed whether learning
of Stage 1 contingencies had been successful. As in
the human data, the following trials were of inter-
est: high-probability outcomes following good
predictors (GPH); low-probability outcomes fol-
lowing good predictors (GPL); medium-prob-
ability outcomes following poor predictors
(PPM). If the network produced the ordinal
relationship shown in the empirical data (i.e.,
higher LCR for GPH than for PPM, and higher
LCR for PPM than for GPL), then it was
considered to have successfully learnt Stage 1. In
total 237 of the 5,184 parameter sets failed to
meet this criterion and were excluded from
further analysis.

For each of the remaining 4,947 sets, learning
scores (LCR on high-probability outcomes
minus LCR on low-probability outcomes) for
good and poor predictor cues were compared
across the two blocks of Stage 2. This revealed
that 1,702 parameter sets mirrored our empirical
data, showing greater learning about good predic-
tor cues than poor predictor cues.

Although these results seem to suggest that
the SRN is potentially able to produce the
desired direction of effect, further analysis tested
the ability of the model to produce a veridical
match to the pattern of data observed in Stage
2. In the empirical data of Experiment 2 (see
Figure 4A), RTs for responses following poor
predictor cues were within the range of those fol-
lowing good predictor cues. That is, participants
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were fastest to GPH trials, were slowest on GPL
trials, and were of intermediate speed on PPH
and PPL trials. However, only some of these
differences between the four trial types reached
significance. RTs on GPH outcomes were signifi-
cantly faster than those on PPH, PPL, and GPL
outcomes, whilst RTs on PPH outcomes were
significantly faster than those on GPL outcomes,
all t(14)s . 2.62, ps , .05. Therefore a parameter
set was assessed as having produced the correct
ordinal prediction overall if it made the correct
ordinal predictions with respect to these
differences considered individually (i.e.,
GPH , PPH, GPH , PPL, GPH , GPL, and
PPH , GPL).

For each parameter set a comparison of the
Stage 2 learning scores for good and poor predic-
tor cues was made using a t test on the data from
the 15 participants in each simulated experiment.
The average of the t-values from the 100 simu-
lated experiments provided a measure of the
“robustness” of the effect produced by each par-
ameter set. Table 3 shows, for the standard
SRN, the proportion of parameter sets showing
the general predictiveness effect of greater learn-
ing about good predictors than poor predictors
and the proportion showing the correct ordinal
predictions, as a function of mean t-value. It is
clear that, for the standard SRN, very few par-
ameter sets produce a “robust” effect of greater
learning about good predictors than poor predic-
tors. The critical t-value for a paired test with 15

participants is 2.145; of those parameter sets that
do generate a predictiveness effect with t . 2,
almost none are able to reproduce the ordinal pat-
terns seen in the empirical data. In fact, of the 50
parameter sets producing the largest Stage 2
effects of prior predictiveness (those producing
t . 2), 47 produced higher LCR values on
GPL trials than on PPH trials. In other words,
in the most successful simulations with the stan-
dard SRN, the ordinal relationships between the
trial types produced a main effect of cue, with
poorer performance to outcomes following poor
predictor cues than to outcomes following good
predictor cues (an effect that was not observed
in either experiment). Figure 5 shows the results
of a simulation with the SRN using parameters
typical of those producing the largest effects of
prior predictiveness.

Learned predictiveness effects analogous to
those observed in Experiments 1 and 2 have pre-
viously been taken as evidence of the operation
of cue-processing mechanisms, which modulate
the associability of cues (see Le Pelley, 2004). It
seems likely, therefore, that an SRN that incorpor-
ates cue-processing mechanisms would be better
able to capture the pattern of results observed in
our empirical data.

Since only input-to-hidden weights are directly
connected to cues (input units) within the
network, in order for a cue’s associability to
directly modulate the amount of learning that
accrues to it we allow associability to modulate

Table 3. Stage 2 simulation results for the standard SRN and the alpha SRN broken down by the robustness of the produced effect

Proportion of parameter sets matching

empirical predictiveness effect

Proportion matching empirical ordinal

pattern of data

Mean t-value Standard Alpha Standard Alpha

. 1 8.0 18.8 4.3 15.2

. 2 1.0 4.8 0.1 4.3

. 3 0 0.9 0 0.9

Note: SRN ¼ simple recurrent network. Proportions are expressed as the percentage of the total number of parameter sets producing

the Stage 1 ordinal pattern of data observed in Experiment 2 (SRN: 4,947; alpha-SRN: 23,752). t-values are the result of a

comparison of the Stage 2 learning scores (Luce choice ratio for high-probability outcomes minus Luce choice ratio for low-

probability outcomes) for good and poor predictor cues, across the 15 participants of each simulated experiment. Mean t-values are

an average of the 100 simulated experiments for each parameter set.
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weight changes only at this level. The learning rule
for weight change between input and hidden units
in the standard SRN (Equation 8) was modified to
incorporate associability as follows:

DWhi ¼ ai � LRhi � dh � ai ð11Þ

where ai is the associability of cue i. In previous
models incorporating cue-processing mechanisms
(e.g., Kruschke, 2001; Mackintosh, 1975), the
change in a cue’s associability is determined by
the extent to which that cue predicts the
outcome compared to the predictive value of all
other cues present on that trial—that is, the pre-
dictiveness of a given cue is assessed relative to
that of other simultaneously presented cues.
However, since only one cue is present on screen
at any one time in the SRT task, changes in
associability cannot be made on the basis of
direct cue comparison in the current model.
Consequently, we based changes in associability
on the absolute predictiveness of a cue—the

model would increase a cue’s associability if that
cue predicted the correct target on the next trial
and would decrease associability if that cue pre-
dicted an incorrect outcome. In line with previous
cue-processing mechanisms (Le Pelley, 2004), the
magnitude of associability change on a trial was
governed by the prediction error of the model, in
this case using the LCR:

If correct thenai ¼ ai þ (LCR)4

If incorrect thenai ¼ ai � (LCR)4
ð12Þ

Values of a were allowed to vary between lower
and upper limits of .1 and 1. Raising the LCR to
the fourth power results in small changes in a on
each learning cycle, ensuring a gradual approach
to these limits. In addition to controlling par-
ameter values as for the standard SRN simulations,
in the “alpha SRN” simulations we also examined
various starting values of a (.1, .2, .3, .4, and .5),
yielding a parameter space of 25,920 sets. All

Figure 5. Example data from a standard simple recurrent network (SRN) simulation of Experiment 2, with parameters LRhi ¼ .3;

LRoh ¼ .5; LRhc ¼ .01; LRb ¼ .3; 50 hidden units. (A) (1 – Luce choice ratio) across Stage 1 training. GPH: responses to high-

probability outcomes following good predictor cues; GPL: responses to low-probability outcomes following good predictor cues; PPM:

responses to medium-probability outcomes following poor predictor cues. (B) (1 – Luce choice ratio) across Stage 2 training. GPH:

responses to high-probability outcomes following cues pretrained as good predictors in Stage 1; GPL: responses to low-probability outcomes

following cues pretrained as good predictors in Stage 1; PPH: responses to high-probability outcomes following cues pretrained as poor

predictors in Stage 1; PPL: responses to low-probability outcomes following cues pretrained as poor predictors in Stage 1.
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other procedural and analytical aspects of these
simulations were as for the standard SRN.

Of the 25,920 parameter sets, 2,168 failed to
produce the Stage 1 ordinal pattern of results
and were excluded from further analysis. Of the
remaining 23,752 parameter sets, a total of
12,144 produced the observed Stage 2 predictive-
ness effect of greater learning about good predic-
tors than poor predictors. Table 3 shows the
proportion of parameter sets showing the Stage 2
predictiveness effect and the correct ordinal pre-
dictions as a function of the robustness of effect,
for the alpha SRN. The alpha SRN produces
over four times as many robust predictiveness
effects (4.8% of the parameter sets) as the standard
SRN, and in contrast to the standard SRN the par-
ameter sets yielding the most robust predictiveness
effects almost invariably also produce the correct
ordinal predictions.

Figure 6 shows detailed results for one par-
ticular parameter set using the alpha SRN.
Figure 6A shows that Stage 1 learning in this
simulation proceeds as observed empirically;
Figure 6B shows how a values for good and
poor predictors diverge over the course of this
training. By the end of Stage 1 the mean a for
good predictor cues has reached an asymptotic
level of 1, as these cues consistently predict the
outcome location on the next trial. In contrast,
poor predictor cues are equally likely to be
followed by one of two possible outcomes.
Consequently the model will make the correct
prediction on 50% of trials at best. As a result,
a values for these cues will be subject to fluctuat-
ing positive and negative adjustments and hence
will rise less rapidly.2 Figure 6C shows Stage 2
performance for the alpha SRN, which is able
to capture the correct ordinal pattern of results
(cf. Figures 4A).

Although the alpha SRN performs consider-
ably better than the standard SRN, the model
fails to predict greater Stage 2 learning about

good predictors than about poor predictors for
almost half of the parameter sets tested. Further
analysis revealed that these failures are largely a
consequence of undifferentiated a values following
Stage 1 training: There was a significant positive
correlation between the difference in a at the
end of Stage 1 (a for good predictor cues minus
a for poor predictor cues) and the size of the
Stage 2 effect, r(23, 752) ¼ .57, p , .001. This
correlation is shown in Figure 7. This pattern is
particularly striking if one compares those par-
ameter sets showing an effect in the direction of
greater Stage 2 learning about good predictors
than about poor predictors (the 4,467 sets with
t . 1) with those showing an effect in the opposite
direction (the 983 sets with t , –1). For the
former, the average difference between the mean
a values for good predictor and poor predictor
cues at the end of Stage 1 was .34, while for the
latter it was only .05. Thus the simulations that
failed to show the observed pattern of Stage 2
learning tended to be those in which a values for
good predictors failed to rise above those of poor
predictors during Stage 1.

In summary, simulation work demonstrated
that the SRN is able to produce the effects of
prior predictiveness observed empirically, albeit
in only a small number of parameter sets.
However, the success of the model was improved
considerably when the model incorporated cue-
specific associability parameters to capture the pre-
dictive histories of cues in the task. Further work
will be required to refine these mechanisms, in
order to understand how best to accommodate
the influence of prior predictiveness on learning
in multilayer networks.

GENERAL DISCUSSION

Two experiments examined the extent to which the
predictive history of a cue can modulate the rate at

2 Since poor predictor cues consistently predict two different outcomes during Stage 1, we would expect the associability of these

cues to decrease as often as it increases. However, whilst this is true, since LCR values will be greater for correct than incorrect pre-

dictions, positive changes in associability will always be greater than negative changes, and hence we would expect to observe gradual

increases in the associabilities of these cues during this stage.
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which that cue is subsequently learnt about during
a sequence learning task. In both experiments the
predictiveness of a subset of cues was manipulated
during an initial pretraining phase, after which new
sequenced transitions involving these cues were
created, and learning about these new transitions

was examined. Analysis of learning at the sub-
sequence level revealed that those cues that had
previously been established as good predictors
were learnt about more readily than those cues pre-
viously established as poor predictors. This effect
was found in Experiment 1, where each stimulus

Figure 6. Example data from an alpha simple recurrent network (SRN) simulation of Experiment 2, with parameters LRhi ¼ .7;

LRoh ¼ .3; LRhc ¼ .1; LRb ¼ .1; starting value of a ¼ .3; 15 hidden units. (A) (1 – Luce choice ratio) across Stage 1 training. GPH:

responses to high-probability outcomes following good predictor cues; GPL: responses to low-probability outcomes following good predictor

cues; PPM: responses to medium-probability outcomes following poor predictor cues. (B) Alpha values across Stage 1 training. GP: good

predictor cues; PP: poor predictor cues. (C) (1 – Luce choice ratio) across Stage 2 training. GPH: responses to high-probability outcomes

following cues pretrained as good predictors in Stage 1; GPL: responses to low-probability outcomes following cues pretrained as good

predictors in Stage 1; PPH: responses to high-probability outcomes following cues pretrained as poor predictors in Stage 1; PPL: responses

to low-probability outcomes following cues pretrained as poor predictors in Stage 1. (D) The Stage 2 data expressed as learning scores.
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location was designated as either a cue or an
outcome during pretraining, and in Experiment
2, where all stimulus locations functioned as both
cues and outcomes throughout. The effect of
predictive history on new learning is rather
short-lived in the context of a sequence learning
experiment. However, it is worth noting that
within a single Stage 2 block, each cue-outcome
pairing was presented, on average, 30 times in
Experiment 1 and 20 times in Experiment 2 (this
difference was due to the former being a four-
choice task, while the latter was a six-choice
task). The amount of Stage 2 training in each
experiment is therefore far greater than that used
in analogous HCL demonstrations of these
associability effects—for example, Le Pelley and
McLaren (2003) gave four presentations of each
cue-outcome pairing in Stage 2.

We might consider the transitions pertaining to
poor predictor cues in Stage 1 of each experiment
to be “ambiguous”, in the sense that each cue was
followed by two likely outcomes, whilst the
transitions pertaining to good predictor cues
were somewhat “unique”, in the sense that there

was a high probability of one outcome occurring
after these cues. Cohen et al. (1990; see also
Curran & Keele, 1993) found that learning
sequences of ambiguous transitions required atten-
tional processing, whilst learning sequences of
unique transitions could be achieved under con-
ditions of attentional load. The current results
extend these findings by indicating that differences
in the ambiguity of the transitions following cues
can themselves lead to a change in the attentional
processing that participants devote to those cues.
Furthermore these differences in attentional
processing can differentially influence subsequent
learning about those cues even when all cues are
now involved in equally ambiguous transitions.

Computational simulation revealed that while
the simple recurrent network (Elman, 1990) was,
under certain conditions, able to produce a
predictiveness effect consistent with the empirical
data, such predictions were typically not robust.
Moreover, for those few sets of parameters that
did produce robust predictiveness effects, the
network almost invariably failed to reproduce the
ordinal patterns observed in our data. However,

Figure 7. The magnitude of the Stage 2 effect as a function of the difference in a for good and poor predictor cues at the end of Stage 1, for

simulations with the alpha simple recurrent network (SRN). Positive values on the a difference scale reflect a greater average a for good

predictor cues over the average for poor predictor cues. Positive t-values reflect greater learning during Stage 2 about cues pretrained as

good predictors over cues pretrained as poor predictors.
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a modification of this model that included a
cue-specific associability parameter produced a
far higher proportion of simulations showing
robust effects in line with our empirical findings,
and the vast majority of these parameter sets also
produced ordinal predictions matching our data.
It is of course possible that other modifications
of the standard SRN not based on associability
would also allow the resultant model to explain
our findings. However, given the conceptual simi-
larity of our studies of predictive history on cue
learning in the SRT task to earlier investigations
of cue-processing effects in human and animal
learning (e.g., Le Pelley & McLaren, 2003;
Mackintosh, 1973; see Le Pelley, 2004, for a
review), we believe that an account based on differ-
ences in cue processing (as implemented by
associability) deserves consideration.

A key question in human sequence learning is the
extent to which learning engages selective attentional
mechanisms. Previous work has focused on whether
learning of concurrent sequential information can
occur despite these cues having no necessary
benefit for the learning of the primary task (e.g.,
Jimenez & Mendez, 1999; Mayr, 1996; Rowland
& Shanks, 2006). The data presented here support
the suggestion that selectional cue-processing mech-
anisms can also act at a “within-sequence” level,
having a differential effect on learning about different
elements of the same sequence, depending on the
predictive history of those elements.

Several previous studies of HCL in more
traditional, nonsequential paradigms have also
claimed to demonstrate cue-processing effects in
learning (e.g., Bonardi et al., 2005; Kruschke &
Blair, 2000; Le Pelley et al., 2007; Le Pelley &
McLaren, 2003). The current experiments
extend this existing research by demonstrating
associability effects in a preparation in which par-
ticipants receive no directed instruction to learn—
they are asked to respond to, rather than predict,
the outcome on each trial. That is, the instructions
involved in this task provide participants with no

reason or incentive to engage in strategic, hypoth-
esis-testing processes, or to intentionally exploit
any knowledge of the cue-outcome contingencies
that they may possess. Furthermore, the SRT
paradigm involves a rapid mode of stimulus pres-
entation and response, with average reaction
times generally well below 600 ms, limiting the
time available for participants to engage in
higher order reasoning processes. We would
argue that the observation of associability effects
under such conditions is at least consistent with
the idea that these effects have a more automatic,
lower level basis, although more research is
required to verify whether this is, indeed, the case.

Learned predictiveness in multiple- versus
single-cue designs

In all previous demonstrations of learned predic-
tiveness effects in human contingency learning,
manipulations of predictiveness have involved the
use of compound stimuli, comprising two or more
individual cues, in the pretraining stage (e.g.,
Bonardi et al., 2005; Griffiths & Le Pelley, 2009;
Le Pelley et al., 2007; Le Pelley & McLaren,
2003; Whitney & White, 1993). Typically one of
the cues of the compound is arranged to be an accu-
rate predictor of the outcome, whilst another is
arranged to be a poor predictor. This provides the
opportunity for stimulus comparison—that is, a
relative assessment of which of the available cues
is the best predictor of the outcome. Previous
models designed to produce cue-processing
effects state that associability is explicitly based on
such a comparison process (Krushcke, 2001;
Mackintosh, 1975), acting to select between
several alternative candidate cues.3

The importance of stimulus comparison is a
central part of Le Pelley’s (2004) hybrid model
of associability effects. He noted that, in studies
of animal learning, pretraining involving multiple
simultaneously presented cues tends to lead to
faster learning about good predictors than about

3 Even in animal studies of learned irrelevance that ostensibly only involve a single conditioned stimulus (e.g., Mackintosh, 1973),

the standard analysis assumes a comparison of predictiveness between this conditioned stimulus and the experimental context, with

the latter operating essentially as an additional, simultaneously presented cue.
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poor predictors (as anticipated by the model of
Mackintosh, 1975). In contrast, pretraining of
animals with single cues (in which case there can
be no direct stimulus comparison to determine
the more predictive stimulus) tends to give faster
learning about poor predictors than about good
predictors (Hall & Pearce, 1979; Swan & Pearce,
1988; Wilson, Boumphrey, & Pearce, 1992).
This finding is more consistent with the model
of associability offered by Pearce and Hall
(1980), which in some sense can be considered
as the opposite of the approach offered by
Mackintosh.

The SRT task provides a clear example of a
single-cue learning paradigm: Only a single stimu-
lus is presented on each trial, and participants are
required to respond to that stimulus regardless of
its predictive status. We can therefore be certain
that participants were engaged in the processing
of, and the active responding to, the stimulus on
each trial. Hence, drawing a parallel with studies
of animal conditioning (and on the basis of Le
Pelley’s, 2004, hybrid model) we might expect to
find faster learning about poor predictors than
about good predictors in Stage 2. The fact that
the opposite result was observed, with faster learn-
ing about good predictors than poor predictors,
presents a clear discrepancy between learned pre-
dictiveness effects in animals and humans (and
by extension suggests that the hybrid model
might be best confined to accounting for associa-
bility effects in animal, rather than human, learn-
ing). The demonstration of a learned
predictiveness effect in a single-cue task such as
the SRT suggests that in these situations
changes in cue processing might be driven more
by the absolute predictiveness of the cue (i.e., the
extent to which a cue is a good predictor of
outcomes) than its relative predictiveness (i.e.,
the extent to which a cue is a better predictor
than other available cues). Consistent with
this suggestion, in our alpha SRN simulations
associability was determined by the absolute
predictiveness of each cue considered individually,
as defined by the LCR.

While our experiments represent, to the best of
our knowledge, the first evidence of learned

predictiveness effects favouring learning of good
predictors over poor predictors in a design invol-
ving presentation of only a single cue on each
trial, we are not the first to suggest a discrepancy
between learned predictiveness effects in humans
and animals. Latent inhibition refers to the
phenomenon of retarded conditioning to a pre-
viously nonreinforced stimulus observed in
studies of animal conditioning (see Lubow,
1989). It is an effect that occurs in single-cue
learning procedures and follows naturally from
the Pearce and Hall (1980) model of associability.
While reports of latent inhibition are ubiquitous in
animal conditioning, analogous procedures in
humans typically do not yield similar effects—
observing latent inhibition in humans typically
requires the use of a masking task during preexpo-
sure, which permits explanation of the resulting
effect in terms of alternative processes (Graham
& McLaren, 1998). More generally this represents
another discrepancy that is consistent with
(although does not prove) the suggestion that
single-cue learning procedures do not engage the
same associability processes in humans and animals.

Associability and attention

In the current tasks, we measured changes in
associability by examining the effect of prior pre-
dictiveness on the rate of subsequent learning
about cues. This raises the question of how best
to characterize this change in associability. One
possibility is that the associability of a cue is
simply a learning rate—that is, that the effect of
prior predictiveness is restricted to modulating
only the rate of learning about a cue. An alterna-
tive possibility is that the observed changes in
associability result from changes in attention to
cues (see e.g., Kruschke, 2001). That is, partici-
pants might pay more attention to cues that have
been consistent predictors in the past than to
those that have been inconsistent. We need only
assume then that attention influences the rate of
learning about a cue, in order to explain the influ-
ence of prior predictiveness on learning rate
observed empirically. Importantly, on this atten-
tional account the influence of prior predictiveness
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need not be restricted to learning rate: If attention
to the cues has changed, then this might also be
expected to influence other aspects of the proces-
sing of these cues.

Given that the current experiments measure
only the rate of learning about cues, our data do
not allow us to decide between these alternatives.
Future experiments will address this issue by pro-
viding a more direct measure of visual attention
during this task, using eye-tracking equipment.
If the advantage for good predictor cues does
indeed reflect greater attention to these cues,
then we should observe a bias in eye gaze
towards good predictor cue locations.

CONCLUSION

In conclusion, this paper offers, to the best of our
knowledge, the first experimental evidence that
the readiness with which a cue will develop a
mapping to a novel outcome can be modulated
by the predictive history of that cue in an inciden-
tal sequence learning task. Computational simu-
lations demonstrate that this pattern of results
can be accommodated by the associative frame-
work of a modified SRN, in which cue-specific
learning rate parameters modulate associative
sequence learning. It remains possible that other
modifications to multilayer networks will also
allow them to account for the influence of prior
predictiveness on cue processing in incidental
sequence learning. Future work will investigate
this possibility and will subsequently investigate
how such an influence is best characterized.
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APPENDIX

Instructions preceding Experiment 1

“The aim of this study is to examine the effect of practice on

motor control. In this task you are required to follow a grey

circle as it moves between six positions on the screen. The six

positions are situated across the middle of the screen and are

represented by six smaller grey circles. Each of the six positions

corresponds to a key on the keyboard, these keys are X, C, V, B,

N and M, along the bottom row of the keyboard. X is used to

respond to the far left position, M the far right, and the others

for the positions in-between. Each time the larger circle

changes position you are required to press the appropriate key

to identify its new location. Once you have pressed a key, the

circle representing that position will turn red to indicate

where you have responded. Should you respond incorrectly

you will hear a beep in the headphones. After you have

responded the larger grey circle will disappear and reappear in

a new location. In summary, your task is to follow the circle

as it moves between the six positions. Each time the stimulus

moves we would like you to respond as fast and as accurately

as you can. In particular, we want you to avoid making errors

in this task. The participant who performs the best over the

course of the experiment will win a £10 prize. The experiment

is split into 12 blocks, each of which lasts for approximately 3

minutes. At the end of each block you will be given a rest of

15 seconds before the next block starts. During this break a

countdown will appear to show you when the next block of

trials will start.”
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