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A fundamental principle of learning is that predictive cues or signals compete with each other to gain
control over behavior. Associative and propositional reasoning theories of learning provide radically
different accounts of cue competition. Propositional accounts predict that under conditions that do not
afford or warrant the use of higher order reasoning processes, cue competition should not be observed.
We tested this prediction in 2 contextual cuing experiments, using a visual search task in which patterns
of distractor elements predict the location of a target object. Blocking designs were used in which 2 sets
of predictive distractors were trained in compound, with 1 set trained independently. There was no
evidence of cue competition in either experiment. In fact, in Experiment 2, we found evidence for
augmentation of learning. The findings are contrasted with the predictions of an error-driven associative
model of contextual cuing (Brady & Chun, 2007).
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Understanding the fundamental processes and properties of learn-
ing has been a central goal of experimental psychology for over a
century, yet there remains a deep division within the field at the
broadest theoretical level. Associative accounts posit that learning the
relationship between events involves the strengthening of links be-
tween the mental representations of stimuli, through processes such as
reinforcement and prediction error. Associationism has a long and
successful history as an explanatory framework for learning phenom-
ena across a wide range of species (see Bouton, 2007) and has led to
a number of influential formal models of learning. A profoundly
different account describes learning as a process of higher order
cognition, arising through causal reasoning and the formation of
beliefs (see Mitchell, De Houwer, & Lovibond, 2009).

One aspect of learning that must be accounted for by any theory
is how stimuli compete for the control of behavior: Why is it that
some cues are learned about at the expense of others? Kamin
(1969) demonstrated that when two stimuli, A and B, are condi-
tioned in compound (AB�, with � indicating the outcome event),
learning is impaired relative to when these stimuli are conditioned
apart (B�). In addition, after a cue is initially trained as a signal
for reinforcement (A�), learning about a novel cue is impaired
when conditioned in compound with this pretrained cue (AB�;
poor learning about B). Kamin termed these cue-competition phe-
nomena overshadowing and blocking, respectively, and there have
been many subsequent demonstrations of these effects in a variety
of conditioning studies across a range of nonhuman animals (see
Macphail, 1982) as well as in human contingency learning (HCL)

tasks (e.g., Dickinson, Shanks, & Evenden, 1984; Le Pelley, Bee-
sley, & Suret, 2007).

Following Kamin’s (1969) findings, blocking and overshadowing
became key explananda for models of associative learning. The fa-
mous model developed by Rescorla and Wagner (1972; hereinafter
the Rescorla–Wagner model) provides an explanation in terms of
limitations in processing of the unconditioned stimulus (the reinforc-
ing outcome). Changes in associative strength (�VA) in the Rescorla–
Wagner model are determined by the discrepancy between the actual
outcome occurring and the expectation of the outcome based on the
current associative strength of all stimuli (� � �V):

�VA � � � ��� � 	V
, (1)

where � and � are learning rate parameters. Increases in the associa-
tive strength of the pretrained stimulus, VA, will lead to a decrease in
the prediction error on trials in which it predicts the outcome, (� �
VA)3 0. When the novel stimulus B is presented during compound
trials, the combined associative strength of all stimuli, VA � VB, will
lead to minimal prediction error, (� � VA � VB) � 0. Thus, as the
discrepancy between the expected and actual outcomes will be small,
little will be learnt about cue B.

The success of the Rescorla–Wagner model in explaining a wide
range of learning phenomena has positioned it as a standard formu-
lation of modern associative learning theory. Although the model is
not without its shortcomings (see Miller, Barnet, & Grahame, 1995),
the principles of learning through error correction have received
support both experimentally and physiologically. For instance, acti-
vation in the dorsolateral prefrontal cortex has been shown to be
sensitive to changes in associative strength following unexpected
outcomes (Fletcher et al., 2001), whereas at the neuronal level, do-
pamine neuron responses are consistent with differences in prediction
error during learning tasks (Schultz & Dickinson, 2000). Thus, pre-
diction error is a fundamental property of the neural processes in-
volved in learning and a strong case can be made for its role in cue
competition (Waelti, Dickinson, & Schultz, 2001).

Propositional accounts, in contrast, suppose that participants make
a comparison between the events occurring on different trials during
training and that causal judgments arise through inferential reasoning
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processes (e.g., Mitchell, De Houwer, & Lovibond, 2009). For exam-
ple, in the case of blocking, participants may note that both the
probability of occurrence and the nature of the outcome on AB� trials
were the same as those they experienced on the pretraining A� trials.
Therefore, participants may infer that B is not an independent cause of
the outcome, because B appears to have no effect on the properties of
the outcome or its probability of occurring.

A number of studies have provided support for such a proposi-
tional account of cue competition (for reviews, see De Houwer,
Beckers, & Vandorpe, 2005; Shanks, 2010). For example, De
Houwer, Beckers, and Glautier (2002) used a blocking procedure
in which outcomes could either occur with maximal intensity
(20/20) or with submaximal intensity (10/20). Blocking effects
were stronger when submaximal intensity outcomes were used,
suggesting that participants were able to infer that cue B had the
potential to change the magnitude of the outcome on AB� trials
(increase it to 20/20), but it did not and was therefore unlikely to
be a cause of the outcome.

Of course it may well be the case that both associative and prop-
ositional reasoning accounts are correct but that their respective mech-
anisms may be more or less likely to be engaged by certain task
conditions. Traditionally, cue competition has been examined in HCL
tasks, which provide corrective feedback to allow participants to learn
through a process of trial and error. During a final test phase, partic-
ipants are asked to reflect on their knowledge of the task structure in
order to provide causal judgments. These conditions are likely to
promote the use of controlled reasoning processes during both learn-
ing and retrieval. It follows, therefore, that clearer evidence for the
role of associative processes in human cue competition would come
from an observation of such effects under conditions that restrict
controlled reasoning processes.

These conditions are met in implicit learning tasks. In such tasks,
learning is incidental, in the sense that participants are given a cover
task that does not explicitly highlight the contingencies present in the
task material and in the sense that measurements of learning are taken
during ongoing performance rather than during offline reflective
judgments. The experiments presented in this article provide an ex-
amination of cue competition in one such implicit learning task: the
contextual cuing task developed by Chun and Jiang (1998, 1999,
2003). Thus, the question these experiments seek to answer can be
simply stated: Is cue competition observed in incidental learning
conditions, where inferential processes are unlikely to be engaged? If
so, the involvement of error-driven associative learning would be
more firmly established.

The contextual cuing task is ostensibly a visual search task:
Participants are required to search for a target stimulus (e.g., a T
oriented 90° to the left or right) within a set of distractor stimuli
(e.g., rotated Ls and Fs). Participants are required to use left and
right response keys to make a speeded response to the orientation
of the T. Critically, some configurations of distractor and target
stimuli are repeated throughout the experiment, such that it is
possible for participants to use the repeating pattern of distractors
to cue the target location. On other trials the distractor stimuli are
randomly arranged, such that they do not predict the position of the
target object. The studies of Chun and Jiang (1998, 2003) and
numerous subsequent studies found that target detection was faster
on repeating patterns than on novel patterns, suggesting that par-
ticipants can learn to associate the repeating distractor configura-
tions with the target location.

Unlike in HCL tasks, participants are able to perform this task with
perfect accuracy without engaging in learning: They simply have to
locate the target and respond to it. Thus, it is assumed that learning the
configurations of repeating distractor patterns in the contextual cuing
task reflects incidental learning. Note that the claim here is not that
learning proceeds implicitly (unconsciously or without attention) in
the contextual cuing task. Although such claims have been made
repeatedly (e.g., Chun & Jiang, 1998, 1999, 2003; Goujon, Didier-
jean, & Marmèche, 2009; Hoffmann & Sebald, 2005; Rausei, Mak-
ovski, & Jiang, 2007; van Asselen & Castelo-Branco, 2009), recent
tests of awareness using sensitive recognition and generation mea-
sures found evidence for explicit knowledge in contextual cuing
(Smyth & Shanks, 2008) and evidence concerning the role of atten-
tion is similarly mixed (Jiang & Leung, 2005; Rowland & Shanks,
2006). Moreover, the evidence for associative learning processes is
not directly refuted by evidence of conscious knowledge, because the
issue of awareness is orthogonal to the issue of the representational
level of learning operations (associative or inferential accounts; see
Shanks, 2010). To summarize, the observation of cue competition in
the current tasks would point toward the operation of error-driven
learning processes and would be difficult to reconcile with an account
of cue competition based purely on the operation of controlled rea-
soning processes.

A Formal Model of Contextual Cuing

For each experimental design presented here, it was first necessary
to check whether learning of the task contingencies would be ex-
pected to lead to cue-competition effects. To this end, we subjected
our designs to the associative model of contextual cuing developed by
Brady and Chun (2007), which is capable of producing a cuing effect
by learning associations between the spatial locations of distractor
elements and the spatial location of the target.1

The model is a two-layer neural network in which the input and
output layers of units both represent the same stimulus locations
within the display. Input units are activated by the presence of a
stimulus in the represented location: If a stimulus (target or dis-
tractor) is present, then the activation of the input unit is 1;
otherwise, it is 0. Activation on the output units reflects the
model’s anticipation of a target at these locations, which is
achieved by passing the activation from the input units through a
set of learned weights. Thus, on trials with repeating contexts,
associations strengthen between the positions of distractor stimuli
and the target position, whereas for nonrepeating trials these as-
sociations are weak.

A full description of the model is presented in Brady and Chun
(2007), and some key features of the model are described in the
Appendix. Here, we concentrate only on how the model learns to
update the weights connecting input and output units. The learned
weights are adjusted using a form of the delta rule:

�o � � � ao, (2)

1 Kunar, Flusberg, Horowitz, and Wolfe (2007) have shown that con-
textual cuing might not be driven by an enhancement in the guidance of
attention toward targets but rather by a reduction in the threshold required
for responses to targets in cued locations. Whereas Brady and Chun (2007)
clearly intended their model to reflect attentional guidance, the represen-
tational framework of the model is consistent with either account.
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��LWoi
t �  � �o � ao � ai � � � ��LWoi
t�1, (3)

where �o is the prediction error of output unit o, determined by the
difference between the expected value of the output unit, �, and the
actual activation of output unit o, ao. In Equation 3,  is a learning
rate parameter determining the contribution of the current predic-
tion error to the weight change, ai is the activation of input unit i,
and � is a momentum term that determines how much the previous
weight change (t � 1) contributes to the direction and magnitude
of the current change (t). In summary, the model learns through
incremental weight changes that aim to minimize the error on the
output units. Thus, for a repeating pattern, the input units repre-
senting the present distractor pattern will develop large weights
with the actual target output unit.

Brady and Chun (2007) demonstrated by computational simu-
lations how the model can provide an account of many effects
from the contextual cuing literature, such as the spatial constraints
on distractor–target learning (Olson & Chun, 2002) and unim-
paired cuing following the recombination of separately trained
contexts (Jiang & Wagner, 2004). Brady and Chun stressed that
the model is presented as an account of contextual cuing effects
only and that it is not intended to account for other important
aspects of visual processing, such as the effect of target–distractor
similarity (e.g., Duncan & Humphreys, 1989).

The similarity of the delta rule (Equation 2) to the Rescorla–
Wagner rule (Equation 1; see Sutton & Barto, 1981) encourages
the hypothesis that cues within a repeating pattern will compete for
associative strength in the model: It is sufficient to have only a few
highly predictive elements within a pattern (each with a strong
association to the target) to produce little or no error on the target
output unit. Therefore, in cases where there is zero error for a
given output unit (�o � 0), no adjustments to the weights relating
to this output location will occur. Consider now the behavior of the
network if we were to introduce more predictive elements to a
pattern that contains a set of established predictive elements. For
these stimuli to acquire an association with the target location, they
need some degree of prediction error in the model (�o � 0). Thus,
in a blocking procedure, there is little capacity for the model to
learn about additional predictive elements.

Design and Simulation of Experiment 1

We set out to formally test whether blocking of associative learning
occurs in Brady and Chun’s (2007) model. The design of the blocking
procedure is detailed in Table 1. The uppercase letters in the design
refer to sets of eight distractor stimuli. The lowercase letters refer to
whether that particular set of distractors was predictive of the target
location. If the pattern of distractors was repeated across trials, it was
therefore predictive of the target location (p � predictive). Patterns of
distractors that did not repeat across trials (on each trial distractors
were randomly arranged) were not predictive of target location (r �
random).

A schematic of this design is presented in Figure 1. The experiment
uses a single-phase blocking design. During the training phase, six
different trial types were used, of which four are represented in
Figure 1. Pattern type Ap refers to patterns in which the distractors
repeated and so were predictive of the target location. In a particular
pattern, the arrangement of A distractors consistently predicted the
location (but not the orientation) of the target T. For pattern type Cr,

the distractors were randomly arranged on each trial. For trial types
ApBp and CpDp, all distractors were predictive of target location. The
difference between these two sets of compound distractor patterns,
however, was that in the case of ApBp patterns, half the distractor
elements were independently trained as predictive of the target loca-
tion (Ap). Thus, the logic of the design is that training the Ap patterns
separately will lead the elements of the Ap pattern to become asso-
ciated with the target location. Following sufficient training, these
established associations will result in minimal error on the output
units. Importantly, this reduction in prediction error will occur not
only on Ap trials but also on ApBp trials. Hence, pairing the Ap and
Bp elements in the compound pattern ApBp should lead to attenuated
learning about the Bp elements. Because neither element of the CpDp
compound is trained independently, learning about these elements
should not suffer the associative blocking that occurs for Bp elements.

The four test trials shown in Figure 1 were used to measure the
cuing effect generated by each component of the distractor pat-
terns. The logic of each test trial type is to test the cuing of one set
of distractors while the other set is randomized and therefore not
able to cue the target location. For example, on test trial ArBp, the
A elements were randomly arranged such that any cuing of the
target location (relative to a suitable control trial with no predictive
cues at all) can be due only to the Bp elements. Test trials
constructed in a similar way were used to measure the cuing
generated by Ap, Cp, and Dp elements.

Pattern Creation

Figure 2 shows example displays of actual patterns used in
Experiments 1 and 2. In our experimental tasks, participants were
given screens containing letters F and L or R and B (see later).
However, we continue to use the letters A through D to refer to the
different trial types used in the designs. For trial types Ap, ApBp,
and CpDp, four individual patterns were created, each with a
different configuration of distractor elements. For these four dif-
ferent configurations, the target stimulus was located in a different
quadrant of the grid. For example, for the first ApBp pattern, the
target was positioned in the top left quadrant of the grid, whereas
for the second configuration of type ApBp, the target was located
in the top right quadrant of the grid, and so on.

Trial types Ap and Cr featured only one set of distractors and
were created by placing two distractors in random positions in
each of the four quadrants of the grid. All other trial types featured
two sets of distractors and were created by randomly placing two

Table 1
Design of Experiment 1

Training Test

Ap ApBr
ApBp ArBp
ArBr ArBr
Cr CpDr
CpDp CrDp
CrDr CrDr

Note. The experiment contained four sessions, each containing a training
phase followed by a test phase. Uppercase letters A through D refer to different
sets of eight distractor stimuli. Lowercase letters refer to whether a set of
distractors was predictive (p) of the target location or randomly arranged (r).
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distractors of each letter set in each quadrant. ApBp patterns were
created by adding the Bp elements to the preexisting Ap patterns,
thus maintaining the configuration of Ap distractors across these
two trial types. Patterns for ArBr and CrDr trial types were created
in the same manner as for CpDp trials, but new configurations
were created for each block of the experiment (these configura-
tions did not repeat).

Twelve different target locations were used, three from each quad-
rant of the screen. Four target positions were used for the Ap and
ApBp patterns, and four different targets were used for the Cr and
CpDp patterns. Thus, the targets used for ApBp and CpDp patterns
were presented an equal number of times. Four more target positions
were used for the ArBr and CrDr random patterns. Target location
was also constrained to a ring shaped region around the grid, such that
a target was never displayed near the center of the grid or near the
corners. Because the constraints on target location were applied to all
trial types, biases in responding across trial types cannot be due solely
to the properties of target location.

In the test phase, two test patterns were created from each
compound pattern by replacing one set of distractors with a novel
random arrangement. For example, the trial type ApBr was created
by replacing the B distractors with a novel configuration on each
test trial. The position of the target on these trials was consistent
with the original compound training pattern. Random patterns
ArBr and CrDr were created in the same manner as in the training
phase and used the same four target positions.

Simulation Results

Because we were not fitting the model to any data, the chosen
parameter values were similar to those used in Brady and Chun’s
(2007) simulations.2 The model was run with 500 simulated subjects,
trained with patterns generated by the procedures detailed earlier.

The model was first tested with the same amount of training as
our human participants received (see Experiment 1): 16 blocks of
training and six blocks of test. Figure 3 shows the results of this
simulation. Figure 3A shows the level of activation for the target
output unit during the 16 blocks of training, for the six trial types.
Initially, activation of the target unit decreased rapidly, caused by
the rapid adjustment of the initialized weight structure (small
excitatory and inhibitory weights) to a vastly inhibitory weight
structure.3 The model then learned rapidly about predictive pat-
terns of input. Activation of the target output unit was highest

2 The learning rate () was set at .01, the momentum term (�) was .95,
the bottom-up component (�) was .1, and the width of the attentional
spotlight (�) was set at 10. A higher learning rate parameter was used in the
current simulations (.01 rather than .001), though the ordinal predictions of
the model are consistent across a range of parameter values.

3 Because a nonlinear activation function is used in the model (Equation
4), large negative weights must be formed between these units and active
input units (i.e., ino 3 ��) for the model to produce zero activation on
nontarget output units.

Figure 1. A schematic of the design of Experiment 1. Letters A through D refer to the design elements in Table
1. Lowercase letters refer to whether a set of distractors was predictive (p) of the target location or randomly
arranged (r). T � target stimulus.

Figure 2. Example displays of trial type Ap used in Experiment 1 and ApBp
used in Experiments 1 and 2 (A and B � sets of distractor stimuli; p �
predictive target position). Each stimulus was presented in one of four colors.
P � target stimulus.
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when the network was presented with the Ap patterns, demonstrat-
ing strong learning of the distractor configurations for these pat-
terns. Similarly high performance was seen for the ApBp patterns,
presumably driven to a large extent by learning of the Ap compo-
nent.4 Performance on the CpDp patterns also reached a high level
by the end of the training phase, whereas the network performed
poorly when presented with novel, randomly arranged patterns
(Cr, ArBr, and CrDr). Target activation on the Cr patterns actually
increased over the course of training. This outcome reflects the
consistent placement of the target on the Cr and CpDp trials: The
input activation generated by the target location itself was enough
to cause a moderate level of activation on the target output unit.

Figures 3B and 3C show the model’s performance during the
test phase. Figure 3B shows the activation of the target output unit,

4 It is likely that the slightly lower target output activation on ApBp
compound patterns compared with Ap patterns reflects the greater degree of
interference caused by patterns with more elements (ApBp has twice as many
active elements as Ap). Many of the patterns presented to the model will
contain some degree of overlap in terms of their active input elements. This
overlap will more often than not cause interference in the form of predictions
for an irrelevant target location. Those patterns with more active elements will
contain, in total, more elements in common with other patterns; therefore, on
average, interference will be greater for compound patterns.

Figure 3. Simulation results of Experiment 1 from Brady and Chun’s (2007) model with 16 blocks of training.
Panel A shows activation of the target unit during the training phase. Panel B shows activation of the target unit
during the test phase. Panel C shows the position of the target unit among all output units ranked by activation
level during the test phase. In Panels A and B, higher values reflect more efficient search performance. In Panel
C lower values reflect more efficient search performance. Uppercase letters A through D refer to different sets
of eight distractor stimuli. Lowercase letters refer to whether a set of distractors was predictive (p) of the target
location or randomly arranged (r).
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with highest activation shown on ApBr trials in which Ap patterns
were the only predictive set of distractors. Equivalent activation
was generated by Cp and Dp patterns (assessed on CpDr and CrDp
trials, respectively), which, given the reduced amount of training,
showed lower activation levels than Ap patterns. Despite Bp
patterns receiving the same amount of training as both Cp and Dp
patterns, lower levels of activation were generated on the target
output unit by the Bp patterns (i.e., target activation was lower on
ArBp trials than on CpDr and CrDp trials). Low levels of target
activation were observed on ArBr and CrDr trials, indicating that
the higher levels of activation for Bp, Cp, and Dp patterns consti-
tutes learning of these repeating patterns of context.

Figure 3C shows the test data by a different measure. Here the
output units have been ranked in terms of their activation, and the
y-axis shows the mean rank position of the target output unit. The
pattern is inversely related to the raw target activation levels, with
poorest performance (high rank values) on the all random trials
and best performance (low rank values) on the test of the Ap
patterns. Again, poorer performance was observed on Bp patterns
compared with Cp and Dp patterns. Therefore, the patterns of
results in both the raw activation data and the target rank data show
that the model predicts a blocking effect for this design.

To test the performance of the model after asymptotic learn-
ing of both compounds, the model was given extended training
of 100 blocks. Figure 4 shows the results of this simulation. A
more pronounced blocking effect is seen compared with per-
formance after training with 16 blocks. Thus, the model predicts
that the greater the number of presentations of Ap and ApBp
patterns, the greater the blocking effect will be.

In summary, the model predicts that learning about the predic-
tive nature of a pattern of distractors is impaired if that pattern is
presented in compound with distractor elements that are indepen-
dently trained as predictive of the target location. In other words,
the model predicts a blocking effect: slower and less efficient
target search on ArBp test trials than on CpDr and CrDp test trials.

Experiment 1

The pattern creation method used in Experiment 1 was the same
as that used for the model simulations described earlier. Given that
the model made the prediction that the size of the blocking effect
would increase with extended training, participants were trained
over the course of four sessions. Participants received a training
phase followed by a test phase in each session, conducted in
morning and afternoon sessions on consecutive days.

Method

Participants. Sixteen participants were recruited from the
psychology subject pool of University College London. Partici-
pants took part in exchange for course credit or payment of £16.
Each participant was tested over four sessions, each lasting for
approximately 35 min. Over the course of 2 consecutive days, one
session was conducted in the morning and one in the afternoon.
Morning and afternoon sessions were separated by a break of at
least 2 hr.

Materials and apparatus. The experiment used two separate
sets of stimuli, denoted by letters A and B and by letters C and D
in the design (see Table 1). Trials contained either a target stimulus

letter T or a P. On trials with two sets of distractors, the target letter
T was intermixed with F and L letters, whereas the target stimulus
P was intermixed with R and B letters. On other trials, only one set
of distractors was displayed. To control for any differences in the
ease with which the target letters could be discriminated from the
sets of distractors, the assignment of stimuli was counterbalanced.
For half of the participants, the stimuli F and L were used for
distractor sets A and B, and stimuli R and B were used for
distractor sets C and D. For the remaining participants, this as-
signment was reversed. Furthermore, within each subset of partic-
ipants, the assignment of stimuli within each set was also coun-
terbalanced (e.g., whether F or L represented letter A), creating
eight different configurations in total.

The experiment was conducted on PCs with 17-in. TFT (thin
film transistor) monitors set at a resolution of 1024 � 768. Stim-
ulus presentation and response recording was handled by software
programmed with Cogent 2000 and Cogent Graphics (www.visla-
b.ucl.ac.uk/cogent.php). Stimuli were drawn within the experiment
software. The letter stimuli were 9 mm wide and 13 mm high in
their upright orientation. Stimuli were arranged in a square grid of
64 evenly spaced cells, which was positioned centrally on the
screen and was 193 mm square. The grid was invisible to partic-
ipants. The fixation cross (displayed centrally before each trial)
was 11 mm square. Responses to the target stimulus (see later)
were made with keys x and m on a standard PC keyboard.

The background color of the screen was gray. Stimuli were blue,
red, green, or yellow. Distractor stimuli could be oriented by
rotating the letter by 0°, 90°, 180°, or 270°. Target stimuli could be
oriented by rotating the letter by 90° or 270°. The color and
orientation of the distractors were randomly assigned for each
pattern, with the constraint that there could be no more than four
distractors of one color, and there had to be at least one distractor
of each color, for patterns containing eight distractors. For patterns
containing 16 distractors, there could be, at most, eight distractors
of one color, and there had to be at least two distractors of each
color. Repeating elements of patterns maintained the same color
and orientation for distractor stimuli across repetitions. Target
color was also randomly determined and maintained across pre-
sentations of the same pattern, but target orientation was deter-
mined randomly within each block of trials (see Figure 2 for
example patterns).

Procedure. At the start of the first session, participants re-
ceived instructions detailing the nature of the task. Example dis-
plays were presented, and participants were shown the correct
response for each orientation of the two targets. Participants com-
pleted a practice block of 16 trials containing target stimuli without
distractor stimuli, to allow familiarization with the appropriate
responses for the different target orientations. Participants then
began the main task. In Sessions 2 through 4, participants were
told that the task was the same as in the previous session and
received no further instructions and no practice trials. Sessions
lasted approximately 35 minutes.

Each session contained 16 training blocks followed by six test
blocks. Participants were not made aware of the transition between
the training and test phases. Blocks contained four patterns of each
trial type (see Table 1) resulting in blocks of 24 trials. Within each
block, trials were presented in a random order with the constraint
that consecutive trials across adjoining blocks could not present
the same pattern. A rest break of 20 s was given after every four
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blocks, and trials started automatically after this period. Target
orientation (left or right) was determined randomly but with an
equal number of presentations of each orientation within a sub-
block of eight trials.

Each trial commenced with a fixation cross presented in the
center of the screen for 1,000 ms. This fixation cross was then
replaced immediately by the pattern of stimuli. Reaction times
(RTs) were recorded from the onset of the pattern. Following a
valid response (x or m) the pattern was removed from the screen.
The response–stimulus interval was 1,000 ms. If participants made
an incorrect response to the target orientation, ERROR! appeared
in the center of the screen for 2,000 ms, prior to the response–
stimulus interval.

Results

One participant’s mean RT across all four sessions was more
than three standard deviations from the mean of the sample. This
participant was therefore an extreme outlier in terms of overall RT
and was not included in the analysis.

The mean accuracy across the four sessions for the remaining 15
participants was 98.2%, with each session above 97.8%. Because
of the clear ceiling effects, accuracy was not analyzed further.

RTs on trials on which an error occurred were not analyzed. RTs
were natural log transformed (logRT) to improve the normality of
the distribution. To further reduce the influence of the slowest
responses, logRTs that were three standard deviations greater than

Figure 4. Simulation results of Experiment 1 from Brady and Chun’s (2007) model with 100 blocks of training.
Panel A shows activation of the target unit during the training phase. Panel B shows activation of the target unit
during the test phase. Panel C shows the position of the target unit among all output units ranked by activation
level during the test phase. In Panels A and B, higher values reflect more efficient search performance. In Panel
C, lower values reflect more efficient search performance. Uppercase letters A through D refer to different sets
of eight distractor stimuli. Lowercase letters refer to whether a set of distractors was predictive (p) of the target
location or randomly arranged (r).
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the mean were also removed (�1%), and participant data points
for each trial type were calculated with median averages.

Figure 5A shows the logRTs for the six trial types across the
training phases of the four sessions. The data were collapsed to
four-block averages for analysis (each session actually con-
tained 16 training blocks, with a total of 64 training blocks
across the four sessions). Learning emerges early on in training
for Ap, ApBp, and CpDp patterns as shown by the faster RTs
for these trial types compared with their comparison trial types
(Cr, ArBr, and CrDr, respectively). Because of the overall
difference between RTs to patterns with eight and 16 distrac-
tors, these different trial types were subjected to separate anal-

yses. An analysis of variance (ANOVA) with factors of trial
type (Ap vs. Cr) and block revealed main effects of trial type,
F(1, 14) � 3.79, p � .05 (one tailed), and block, F(15, 210) �
37.89, p � .001, and a significant Trial Type � Block interac-
tion, F(15, 210) � 2.78, p � .01. These results indicate learning
across blocks for Ap compared with Cr. An ANOVA with
factors of set (AB vs. CD), trial type (p vs. r), and block
revealed a main effect of trial type, F(1, 14) � 42.21, p � .001,
and block, F(15, 210) � 88.17, p � .001, and a significant Trial
Type � Block interaction, F(15, 210) � 3.62, p � .001. There
was no main effect of set, nor did this variable interact with the
factors of trial type or block, all Fs � 2.45, ps � .14.

Figure 5. Target search efficiency during Experiment 1 in log transformed reaction time (logRT). Panel A
shows training data collapsed into four-block averages across the four sessions. Panel B shows training data
averaged across all training blocks and sessions. Panel C shows test data averaged across all test blocks and
sessions. Uppercase letters A through D refer to different sets of eight distractor stimuli. Lowercase letters refer
to whether a set of distractors was predictive (p) of the target location or randomly arranged (r).
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Calculating the difference in target search times for predictive
trial types and their random counterparts (i.e., logRTs on Cr minus
logRTs on Ap; ArBr minus ApBp; CrDr minus CpDp) provides a
learning score for each set of distractors, with positive scores
indicating more efficient search for predictive patterns. Analyzing
each training session separately, paired-samples t tests revealed
that there was no evidence for learning of the Ap patterns in
Session 1, t � 1, or Session 2, t(14) � 1.71, p � .11, but evidence
for learning did emerge in Sessions 3 and 4, both ts(14) � 2.34,
ps � .05. There was evidence for learning in every session for
compound trial types, all ts(14) � 2.61, ps � .05. Furthermore,
there was no difference between the learning observed for the
different compound patterns in any of the four sessions, all ts � 1.

Figure 5C shows the test data averaged across all four sessions
of the experiment, in which cuing was independently examined for
the four predictive distractor sets (Ap, Bp, Cp, and Dp). Target
search times on ApBr trials were significantly shorter than on ArBr
trials, t(14) � 3.72, p � .01, supporting the findings from the
training phase that learning of the Ap distractor sets had occurred.
The difference between ArBp and ArBr was also significant,
t(14) � 1.97, p � .05 (one tailed). Target search times were also
shorter on both CpDr trials, t(14) � 3.18, p � .01, and CrDp trials,
t(14) � 2.62, p � .05, compared with those on CrDr trials. Directly
comparing search times for predictive test patterns, pairwise com-
parisons between the four different test pattern types revealed no
differences, all ts(14) � 1.02, ps � .33.

We can assess whether learning of the Bp distractors was
blocked (because of its pairing with the Ap distractors) by com-
paring whether the facilitation in target search time for Bp patterns
(ArBr – ArBp) was smaller than that for Dp patterns (CrDr –
CrDp). Although the Cp and Dp distractor sets were equally
predictive of target location, Dp is the most appropriate compari-
son for Bp, because for each participant, the letter set used for the
D elements was presented the same number of times as the set used
for the B elements (whereas the letter set used for C was presented
more often). A repeated measures ANOVA on these learning
scores, with factors of pattern (Bp vs. Dp) and session (1–4),
showed no main effects of pattern or session, Fs � 1, and no
interaction effect, F(9, 126) � 1.06, p � .40. Averaging across all
sessions, the learning score for Bp was .08 (SD � .16), and the
score for Dp was .15 (SD � .22). These learning scores were not
significantly different, t(14) � 1.09, p � .29. The power to detect
a medium-sized effect (see Cohen, 1998) was .58 (one tailed; d �
.5, � � .05).

Discussion

An intermixed blocking schedule was used in Experiment 1.
Participants received training with compounds of distractor stimuli
(ApBp and CpDp), and in the case of one set of compounds, half
of the distractors were also trained separately as predictive of the
target location (Ap). Simulations demonstrated that this procedure
produced a blocking effect—poor learning of the Bp patterns—in
an associative model of contextual cuing. Empirically, learning
was shown for the compound patterns during the training phase, as
well as for the pretrained single pattern by the end of this phase.
However, when each distractor set was tested individually, there
was little evidence of cue competition.

Experiment 2

Although it was clear that the model predicted a blocking effect
when trained with the intermixed design used in Experiment 1, it
is possible that certain changes to this procedure might provide a
more sensitive empirical test of blocking. Specifically, the inter-
mixed training of Ap and ApBp sets allows for an initial period in
which the prediction error in the model could facilitate learning of
the Bp–target associations and, hence, could reduce the size of the
blocking effect. In addition, it is possible that changing from Ap
patterns, which contain eight distractors, to ApBp patterns, which
contain 16 distractors, might lead to a certain degree of general-
ization decrement. That is, the expected blocking effect may be
weakened because of the inability of the ApBp patterns to activate
the learned representations of the Ap patterns from training.

Experiment 2 addressed these two concerns. The experiment
was run with a larger sample size and a design that we hoped
would increase the size of the effect we were hoping to detect. A
blocking design was used in which the Ap patterns were trained
alone during the first two sessions, presented with additional
random distractors (ApBr) to minimize the generalization decre-
ment that may occur when transferring between training phases.
This pretraining phase should have facilitated the development of
strong associations between the Ap distractors and the target
location, such that when the compound ApBp was presented
subsequently, the Ap patterns would already be capable of reduc-
ing the prediction error and would act as stronger competing cues
to block learning about the Bp distractor patterns.

Design and Simulation of Experiment 2

The design of Experiment 2 is shown in Table 2. Training 1
contains compounds of distractor stimuli designed to pretrain the
Ap distractors as predictive of the target location. In contrast to
Experiment 1, all trials in Experiment 2 contained two sets of
distractor stimuli (i.e., every display included one target and 16
distractors). The intention of this change was to make the repeating
patterns of Ap distractors less obvious to participants. Therefore,
by including more random materials in this stage, we hoped to
make the salience of the repeating patterns of distractors compa-
rable with the salience of repeating patterns in Experiment 1.

Table 2
Design of Experiment 2

Training 1 Test 1 Training 2 Test 2

ApBr ApBr (T1) ApBp ApBr
ArBp

ArBr (T3) ArBr ArBr
CrDr CrDr (T2) CpDp CpDr

CrDp
CrDr (T4) CrDr CrDr

Note. The experiment contained four sessions. Sessions 1 and 2 con-
tained phases Training 1 and Test 1. Sessions 3 and 4 contained an initial
period of Training 1, followed by Training 2 and Test 2 phases. Uppercase
letters A through D refer to different sets of distractor stimuli. Lowercase
letters refer to whether a set of distractors was predictive (p) of the target
location or randomly arranged (r). T1 through T4 refer to different sets of
target positions.
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Four sets of target locations were used. The notations T1
through to T4 refer to which set of target positions was used with
each distractor set. The assignment of these target positions to
distractor sets is explained later.

Similar to Experiment 1, comparison of performance on ApBr
and CrDr trials during Training 1 provides a measure of learning
about the predictive Ap distractor sets. However, for any given
participant, target detection may be easier with, say, distractor
letters F and L than with distractor letters B and R. Whereas the
counterbalancing of distractor stimuli will minimize the impact of
these differences on performance when assessed over the whole
sample, we sought a test that would provide a more accurate
measure of learning at an individual participant level. Test 1
provided this measure, by comparing target search times on ApBr
with those on random distractor patterns, ArBr, which were cre-
ated with the same stimuli. Note here that different target positions
were used for the new sets of random trials in Test 1 (ArBr with
target set T3 and CrDr with target set T4). By using these untrained
target sets, we were also able to measure the effect of target
frequency on cuing performance; we would expect performance to
be better on the trained targets, T1 and T2, than on the untrained
targets, T3 and T4. Confirmatory evidence of learning about the
Ap distractor set would therefore be shown by a greater difference
in target search times between T1 and T3 compared with the
difference between T2 and T4.

Training 2 provided training with compounds of the distractor
stimuli, ApBp and CpDp. These compound trials used the same target
locations as were used in Training 1 (T1 and T2). Random trials
continued to use the target locations used in Test 1 (T3 and T4).

Test 2 provided the critical test of learning about predictive dis-
tractor sets A through D. The logic of each comparison is the same as
that used in Experiment 1. For instance, to assess whether learning
about Bp trials differed from learning about Cp and Dp trials, we can
compare the difference in performance on ArBp and ArBr to the
difference in performance on CpDr (or CrDp) and CrDr.

The model was trained with 48 blocks of Training 1, six blocks
of Test 1, 24 blocks of Training 2, and eight blocks of Test 2. This
training schedule was similar to the training structure given to
participants (see later). The model was trained with the same
parameters and number of simulated subjects as the simulations
conducted for Experiment 1.

Figure 6A shows the activation of the target output unit over the
course of Training 1. Activation was higher on ApBr trials than on
CrDr trials, indicating learning of the Ap distractor patterns. As in
Experiment 1, target output activation increased across training for
CrDr trials, indicating some degree of learning about the fixed set of
target locations for these trials. This target frequency effect was also
evident in Figure 6B, which shows the results of Test 1. Here, very
little output activation occurred on presentation of patterns paired with
the new target positions T3 and T4, and performance on CrDr trials
with T2 targets was better than on those presented with T4 targets.
Hence, the model showed strong learning of predictive distractor sets
and also demonstrated a target frequency effect.

Figure 6C shows target activation during Training 2. Target
activation on both ApBp and CpDp trials reached a high level by
the end of this training period, with higher activation seen on
ApBp trials driven by pretraining of ApBr in Training 1.

Test performance is shown in the lower panels of Figure 6.
Focusing on the target output activation data (Figure 6D), higher

activation was observed when the model was presented with the
Ap distractor sets (ApBr). Moreover, target output activation was
lower on Bp test trials than that on Cp and Dp test trials, which
demonstrates a clear blocking effect in the model. As in the
simulations of the Experiment 1 design, when using the activation
rank measure, the corresponding pattern of results was observed
(Figure 6E). That is, search performance was less efficient on Bp
test trials (more locations were checked before the target was
found) compared with control test trials Cp and Dp.

Method

Participants. A new sample of 20 participants was recruited
from the psychology subject pool at University College London.
Participants took part in exchange for course credit or payment of
£16. The length and organization of the four sessions were the
same as in Experiment 1.

Materials and apparatus. The stimuli were created in a
manner similar to that used in Experiment 1, but in Experiment 2,
all patterns contained two sets of distractors. A ring of 16 target
locations was selected, with these locations approximately an
equal distance from the center of the screen. For each participant,
these 16 locations were divided equally between the four different
target sets (i.e., T1–T4), with the constraint that each target set had
one target in each quadrant of the screen. The apparatus and
stimulus creation methods were identical to those in Experiment 1
with each set of predictive distractors (e.g., Ap) comprising four
repeating patterns.

Procedure. The method of stimulus presentation was identi-
cal to that used in Experiment 1. Sessions 1 and 2 contained 48
blocks of Training 1, followed by six blocks of Test 1. Sessions 3
and 4 began with four blocks of Training 1, which served as a
reminder presentation of the Ap patterns. Participants then re-
ceived 16 blocks of Training 2, followed by eight blocks of Test 2.

Each block contained four patterns from each trial type. Thus,
Training 1 blocks contained eight trials, Test 1 blocks contained 16
trials, Training 2 blocks contained 16 trials, and Test 2 blocks
contained 24 trials. Within each block, trials were presented in a
random order with the constraint that consecutive trials across
adjoining blocks could not present the same pattern. A rest break
of 20 s was given after every 60th trial, and trials started automat-
ically after this period. Target orientation (left or right) was deter-
mined randomly but with an equal number of presentations of each
orientation within a subblock of eight trials.

Results

The mean accuracy was 97.9% (SD � 1.8), with each session
above 97.4%. Data transformations and exclusions for long RTs
(�1%) were conducted in the manner outlined in Experiment 1.

Figure 7A shows data from the Training 1 phase collapsed into
four-block averages for the two sessions (each session contained 48
blocks of Training 1). An ANOVA with factors of trial type (ApBr
and CrDr) and block revealed main effects of trial type, F(1, 19) �
11.88, p � .01, and block, F(23, 437) � 41.72, p � .001, and a
significant interaction effect, F(23, 437) � 2.21, p � .01. Participants
clearly learned about the repeating ApBr patterns in Training 1.

Figure 7B shows data averaged across the first two sessions and
across blocks, with the data from Training 1 presented as the first
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two bars and the data from Test 1 as the last four bars. As
described earlier, an additional test of learning is provided by
comparing the difference in target search times on frequent and
infrequent targets for the different sets of stimuli. An ANOVA was
conducted on the Test 1 data in Figure 7B (last four bars) with set
(AB vs. CD) and target (T1 and T2 vs. T3 and T4) as within-
subject factors. This revealed a main effect of set, F(1, 19) � 4.53,
p � .05, suggesting that target search was overall more efficient
with AB than CD distractors. The main effect of target was highly
significant, F(1, 19) � 51.37, p � .001, which confirms that target
search was faster on familiar target positions (T1 and T2) than on
novel target positions (T3 and T4). More important, the interaction
was significant, F(1, 19) � 8.80, p � .01, indicating that the
difference in target search efficiency for familiar and novel target

sets was greater for AB patterns, which provides further evidence
of the Ap distractor learning during Training 1.

Figure 8A shows data from the Training 2 phase as four-
block averages for Sessions 3 and 4 (each session contained 16
blocks of Training 2). It is clear from the faster responses to
ApBp compared with CpDp at the start of the Training 2 phase
that there was substantial generalization between the ApBr and
ApBp patterns. To evaluate whether learning of the CpDp
compounds occurred, the data from CpDp and CrDr were sub-
jected to a repeated measures ANOVA with factors of block and
trial type (CpDp vs. CrDr). This revealed a main effect of block,
F(7, 133) � 10.18, p � .001, and trial type, F(1, 19) � 20.47,
p � .001, and, more important, a significant interaction, F(7,
133) � 2.09, p � .05. This interaction indicates that the

Figure 6. Simulation results of Experiment 2 from Brady and Chun’s (2007) model. Panel A shows activation
of the target unit across Training 1. Panel B shows activation of the target unit during Test 1. Panel C shows
activation of the target unit across Training 2. Panel D shows activation of the target unit during Test 2. Panel
E shows the position of the target unit among all output units ranked by activation level, during Test 2. In Panels
A through D, higher values reflect more efficient search performance. In Panel E, lower values reflect more
efficient search performance. Uppercase letters A through D refer to different sets of eight distractor stimuli.
Lowercase letters refer to whether a set of distractors was predictive (p) of the target location or randomly
arranged (r). T1 through T4 refer to Target Sets 1 through 4.
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difference in responding between the predictive and nonpredic-
tive trial types increased across the two sessions of training and,
therefore, that participants learned about the CpDp distractor
patterns during this training.

Figure 8C shows the data from Test 2. It is clear that target
search times on ApBr trials were shorter than those on all other
trials. A paired-samples t test revealed a significant difference
between ApBr trials and ArBp trials, t(19) � 2.69, p � .05, and
between ApBr and the average of CpDr and CrDp, t(19) � 3.40,
p � .01.5 Crucially, however, there was no difference between
target search times on ArBp trials and the average of CpDr and
CrDp trials, t(19) � 1.45, p � .16, which suggests that pairing the
Bp distractors with the pretrained Ap distractors did not result in
competition for learning. In fact, when assessed against the base-
line provided by the patterns of random distractors (ArBr and
CrDr), the difference in target search times on ArBr and ArBp
trials, M � .23 (SD � .17), was greater than the difference
between CrDr and the average of CpDr and CrDp, M � .12 (SD �
.16), t(19) � 2.81, p � .01. This finding suggests that rather than
competing for learning resources, pairing the B distractors with the
pretrained A distractors led to augmentation of learning.

Discussion

In Experiment 2, participants were pretrained with predictive
distractor patterns, Ap, for the first two sessions, before compound
training was introduced. Simulation results with Brady and Chun’s
(2007) model showed that this pretraining procedure produced a
strong blocking effect. The data from the first two sessions pro-
vided clear evidence that these pretraining patterns were learned.
In the following two sessions, the Ap patterns were paired with

additional predictive distractors, Bp, and the learning of these
additional distractors was assessed relative to control patterns Cp
and Dp. The test data from Sessions 3 and 4 provided no evidence
for cue competition in this task. In fact, learning was greater for the
Bp patterns than for the Cp and Dp patterns. Thus, these data
suggest that augmented learning, rather than competition, occurred
between the two sets of distractor patterns.

It is worth noting that the augmentation effect found in
Experiment 2 was shown only when cuing was assessed relative
to responding in the random pattern conditions. In fact, al-
though we might have expected responses on ArBr and CrDr
trials to be equivalent, responses on ArBr trials were in fact
slower, t(19) � 2.74, p � .05. One potential explanation for this
difference is based on the generalization occurring between
predictive and random patterns. If we consider that the ran-
domly generated ArBr patterns will share some overlap with the
features of the ApBr patterns, a greater impairment in perfor-
mance might be expected to occur on ArBr trials; a target is
expected in a location predicted by the Ap pattern, but the target
occurs elsewhere. However, it is also the case that by this
explanation, the same performance impairment would be ex-
pected in the Training 2 data, and this pattern was not observed
(see Figure 8B).

5 Unlike in Experiment 1, the stimuli used for the C and D distractor sets
are presented an equivalent number of times over the course of Experiment
2. As such, we would expect equivalent learning about Cp and Dp sets;
therefore, the average of the cuing effect on these trials can be used as a
comparison with Ap and Bp. A blocking effect would be shown by a
smaller difference in performance between ArBp and ArBr compared with
the difference between CpDr/CrDp and CrDr.

Figure 7. Target search efficiency during Sessions 1 and 2 of Experiment 2 in log transformed reaction time
(logRT). Panel A shows Training 1 data collapsed into four-block averages across both sessions. Panel B shows
Training 1 and Test 1 data averaged across all blocks and both sessions. Uppercase letters A through D refer to
different sets of eight distractor stimuli. Lowercase letters refer to whether a set of distractors was predictive (p)
of the target location or randomly arranged (r). T1 through T4 refer to Target Sets 1 through 4.
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Alternatively, the performance impairment may reflect a general
impairment on all trials presented in the AB stimulus set. That is,
participants may come to expect the compound ApBp patterns on
trials presented in the AB feature set. When these patterns are
expected but are not presented during the test phase, participants
may emit slower responses in general on all trials using the AB
feature set. Thus, the baseline rate of responding might be slower
in general for the AB set, and the extent to which the separate Ap
and Bp patterns have been learned, or the extent of generalization
between these patterns and the compound patterns, will determine
whether cued responses counteract this effect on baseline re-
sponses. In contrast, we might expect the CpDp patterns to have

weaker representations because of the absence of any pretraining;
therefore, we would expect this general impairment in responding
for the CD set to be weaker.

General Discussion

Propositional reasoning accounts of human learning assume that
cue competition effects arise through the effortful evaluation of the
contingent relationships among stimuli. A prediction that follows
naturally from this account is that under conditions that do not
require or allow such processes to operate, cue competition should
not be observed. We explored this prediction by examining cue

Figure 8. Target search efficiency during Sessions 3 and 4 of Experiment 2 in log transformed reaction time
(logRT). Panel A shows Training 2 data collapsed into four-block averages across both sessions. Panel B shows
Training 2 data averaged across all blocks and both sessions. Panel C shows Test 2 data averaged across all
blocks and both sessions. Uppercase letters A through D refer to different sets of eight distractor stimuli.
Lowercase letters refer to whether a set of distractors was predictive (p) of the target location or randomly
arranged (r).
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competition under conditions that we hoped would restrict the
operation of higher order reasoning processes and that would, in
turn, promote the operation of associative learning mechanisms.
Two experiments used the contextual cuing task in which learning
was measured in online performance rather than offline judgments.
Participants received instructions to locate and respond to a target
stimulus but were given no direction toward task cues or toward
the fact that learning was even possible in the task. A standard
contextual cuing effect was observed: Participants were faster to
detect targets when the spatial arrangement of distractor locations
cued the target location. To examine cue competition under these
conditions distractor–target contingencies were trained in blocking
procedures. However, despite clear evidence that participants were
able to learn about the contingencies between distractors and the
target, there was no evidence of cue competition. These data are
therefore consistent with the propositional reasoning framework
(e.g., Mitchell, De Houwer & Lovibond, 2009), which predicts that
cue competition will not be observed when learning occurs
through incidental means.

In contrast, the absence of cue-competition effects in these data
is clearly inconsistent with associative accounts that explain cue
competition as resulting from a summed error learning process
(e.g., Rescorla & Wagner, 1972). According to these accounts, cue
competition is a result of the prediction error on a trial being
determined by the associative strength of all the presented cues.
Thus, for a blocked cue, the prediction error is determined by the
combined associative strength of the pretrained and the blocked
cue. Because the associative strength of the pretrained cue will
lead to minimal prediction error, learning about the blocked cue
will be minimal. As we have shown in the simulation results for
each experiment, this prediction extends to models of contextual
cuing based on similar associative mechanisms (Brady & Chun,
2007). In this respect, it is worth noting that these predictions
follow for any connectionist model based on this form of compet-
itive learning rule. For example, blocking effects are clearly pre-
dicted by models of category learning built on similar error-
correction principles, and yet Bott, Hoffman, and Murphy (2007)
provided data that are inconsistent with this prediction.

The extent to which the present data are also inconsistent with other
models of associative learning is less clear. Models based on a
separable rather than a summed error term (e.g., Bush & Mosteller,
1951) cannot account for cue competition. One could, therefore,
appeal to such processes to explain the current data, but it is not clear
why such processes would operate during incidental learning tasks
and not in other forms of HCL in which cue competition has been
observed. Thus, such a mechanism would be unable to provide an
independent account of learning across these conditions and an appeal
would have to be made to additional processes (such as inferential
reasoning) to account for the data from HCL.

Perhaps a more plausible account is provided by models of
associative learning, which incorporate attentional mechanisms,
because these models provide an alternative explanation of cue-
competition effects like blocking and overshadowing. Mackintosh
(1975), for instance, suggested that learning about a cue was
governed by two factors: the prediction error for that cue alone
(i.e., a separable error term) and the attention paid to that cue.
Here, blocking is not a direct consequence of the inability of the
blocked cue to acquire associative strength through error-driven
processes, because in the Mackintosh model, error-driven learning

is determined by the prediction error of each cue individually.
Rather, Mackintosh proposed that because the blocked cue is a
poorer predictor of the outcome than the pretrained cue on com-
pound trials, it receives less attention, and it is this that leads to a
failure to learn about blocked cues. Indeed, evidence from human
contingency learning experiments has shown that attentional pro-
cesses play an important role in cue-competition effects (Beesley
& Le Pelley, 2011; Kruschke, Kappenman, & Hetrick, 2005;
Wills, Lavric, Croft, & Hodgson, 2007). If we assume that asso-
ciative learning in contextual cuing is also driven by attentional
processes akin to those proposed by Mackintosh, then a failure to
observe blocking in this task would point to a failure of selective
attention mechanisms to tune out blocked cues.

A number of studies that have looked at selective attention
mechanisms in contextual cuing speak to this issue. For example,
Jiang and Chun (2001; see also Jiang & Leung, 2005) used
contextual cuing tasks in which half of the distractor stimuli were
presented in red, whereas the other half of the distractors were
presented in green. Participants were explicitly instructed to attend
to the red distractors and to ignore the green distractors. When the
attended but not the unattended distractors were predictive of
target location, a contextual cuing effect was observed. However,
when only the unattended distractors were predictive of target
location, a contextual cuing effect was not observed. These results
highlight the importance of selective attention in contextual cuing,
provided that a strong manipulation of attention is used (i.e.,
attention to color). Are these findings also informative with respect
to why cue competition did not occur in the current contextual
cuing tasks? In the current experiments, the different sets of
distractor patterns were presented as different letter shapes (i.e., F,
L, R, B). Distractor shapes presented on the same trial were
perceptually similar to one another and were primarily chosen to
make the main task reasonably difficult for participants. Therefore,
it is likely that the perceptual grouping by object form in our
experiments would not have occurred as readily as grouping by
color. Moreover, in our experiments, there was no explicit instruc-
tion to attend to certain sets of distractors at the expense of others.
Any biases in selective attention would therefore need to have
arisen from experience with the task contingencies. Further exper-
imental work will be required to examine whether cue competition
arises when distractors are grouped along more perceptually dis-
tinct dimensions.

Although it may be possible to account for the absence of
cue-competition effects in terms of a failure of selective attention
mechanisms or the operation of separable error learning processes,
it is difficult to see how an attentional explanation could be
extended to account for the evidence for augmentation of learning
in Experiment 2. One possible extension would be to assume that
training with ApBr led to some overall attentional bias toward the
sets of patterns presented in the stimuli comprising both the A and
B patterns, such that, in general, attention was greater on AB trials
than CD trials. However, if this were the case, one would expect
to see facilitated responding for ArBr over CrDr trials during
training. This was not the case in any phase of Experiment 2.
Therefore, although one could imagine how the Brady and Chun
(2007) model could be modified to incorporate such attentional
mechanisms, these changes would not be expected to result in a
model that generates augmentation effects. Rather, given the op-
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posite nature of augmentation and blocking, it would seem that
wholesale changes to the model are required.

Further support for augmentation effects can be found in a
recent study by Vadillo and Matute (in press), who used a human
contingency learning task in which participants were trained with
a standard cue-competition procedure: A�, followed by AB � and
CD�. As we have seen, learning about cue B in such a procedure
should—on the basis of error-driven learning—be blocked rela-
tive to cue D. Contrary to this prediction, Vadillo and Matute
observed that when participants’ decisions were made under time
pressure (3 s), learning for cue B was greater than for cue D,
whereas this effect was not observed when this time pressure was
removed (6 s). These data support the findings presented here in
suggesting that under conditions in which higher order reasoning
processes are eliminated (under time pressure, incidental learning),
augmentation is observed for cues trained in compound.

There exists a wealth of data on potentiation and augmentation in
the animal conditioning literature, primarily in conditioned flavor
aversion learning (e.g., Batsell & Batson, 1999; Bouton, Jones,
McPhillips, & Swartzentruber, 1986; Rusiniak, Hankins, Garcia, &
Brett, 1979). Recently, Urcelay and Miller (2009) explored the con-
ditions under which overshadowing and potentiation occur in fear
conditioning, with their results favoring a configural explanation of
the potentiated learning observed for cues trained in compound.
Configural theory (e.g., Pearce, 1987) states that experiencing a com-
pound of cues leads to the formation of a configural representation of
that entire stimulus compound. Cue-competition effects are accounted
for by assuming a generalization decrement: When two cues are
trained in compound but tested apart, the ability of each individual cue
to activate the configural representation is determined by the similar-
ity between the cue and the configural representation. For example,
overshadowing arises because test cue A is less similar to its trained
configural representation, AB, than C (a cue trained separately) is to
its trained representation, C. To explain their potentiation effect,
Urcelay and Miller appealed to low generalization decrement, such
that cue A would be able to strongly activate the representation of the
compound.

To what extent can the present data be explained through a
modified configural theory, such as that suggested by Urcelay and
Miller (2009)? Because our task was not designed specifically to
encourage or discourage configural processing, it is difficult to
say. However, the stimuli in this task were presented in an inter-
mixed fashion, with an even number of distractor elements from
each predictive set displayed in each quadrant of the screen.
Perhaps arranging stimuli in this way, where visual cues are
maximally integrated, naturally leads to a configural mode of
processing (cf. Jiang & Wagner, 2004). It is possible, therefore,
that some additional process that promotes augmentation of learn-
ing (such as the formation of a configural representation or strong
within-compound associations) could be masking any cue-
competition effects that may otherwise be observed.

It is also worth noting that the spatial integration of cues in this
task resonates with those procedures used to examine cue-
competition effects in spatial learning in animals. Although cue-
competition effects are sometimes absent in spatial learning (see,
e.g., Cheng & Newcombe, 2005), they have been observed fre-
quently in both rats (e.g., Horne & Pearce, 2009; Roberts &
Pearce, 1999) and humans (Alexander, Wilson, & Wilson, 2009).

Thus, it is unclear whether the spatial nature of the task is partic-
ularly relevant to the absence of cue competition.

A number of studies in the implicit learning literature have
touched on the issue of cue competition. Endo and Takeda (2004)
used a contextual cuing task in which both the distractor identities
and the configuration of distractor locations cued the location of
the target stimulus (Experiment 1). In this task, participants
learned associations between the pattern of distractor locations and
the target location but not between the pattern of distractor iden-
tities and target location. However, when distractor configurations
were made irrelevant, participants did learn the associations be-
tween distractor identities and target location (Experiment 2).
These data therefore show overshadowing of one cue (distractor
identity) by a potentially more salient or task-relevant cue (dis-
tractor configurations).

How might one explain the contrast between the results of Endo
and Takeda’s (2004) study and the current data? The experiments
reported here were designed to examine cue competition in the
contextual cuing task using cues that were equally valid and repre-
sented by equally salient stimuli. Therefore, one explanation is that
although more relevant or salient task cues might be processed more
readily in the contextual cuing task (Endo & Takeda, 2004), cues of
equal salience do not compete during learning.

In a recent study, Jiménez and Vázquez (2011) gave participants
a contextual cuing task in which participants’ responses followed
a sequenced pattern. That is, participants were able to use the
contextual information in the display to locate the target and were
also able to prepare a response to that target on the basis of the
prior sequence of responses. This dual-predictor condition was
compared with ones in which participants were trained on either
just the contextual information or just the sequence of responses.
The results showed that learning of the context and sequence were
just as strong when learned together as when learned apart, sug-
gesting that these task cues did not compete for access to the
learning mechanism.

These results clearly support the current finding that cue com-
petition does not occur in incidental learning. However, it is worth
noting a crucial dissimilarity between the designs we used and
those used by Jiménez and Vázquez (2011). In their task, partic-
ipants were able to learn about two separate contingencies: be-
tween the context and the target location and between the previous
responses and the current response. From the perspective of error-
driven learning mechanisms, the use of separate outcomes (target
location, target response) is of crucial importance, because cue
competition is generated by cues competing for the limited asso-
ciative strength that can be accrued to a single outcome. Therefore,
it is not obvious that associative models would predict a cue-
competition effect in Jiménez and Vázquez’s task. In contrast, in
our own task, we trained cues in competition for the same outcome
(target location), and as we have shown, the predictions of an
associative model of contextual cuing were clear.

Finally, several studies in the domain of sequence learning have
examined the effect of learning multiple task contingencies. In a
typical sequence learning task, participants respond to a target stim-
ulus that can appear in one of several locations, learning incidentally
the sequenced movements of the target, such that responses are faster
following predictable sequenced transitions than after random move-
ments. Cleeremans (1997) used a version of this task in which
participants were also given a highly salient cue—a cross under one
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location—which signaled the location of the target on each trial.
Despite the presence of this highly valid cue, sequence learning was
unimpaired, suggesting that incidental learning was not subject to cue
competition (see also Jiménez & Méndez, 2001; Mayr, 1996). Al-
though we do not agree that these data necessarily support the idea of
independent implicit and explicit learning systems (as has been sug-
gested), it is clear that the lack of competition under incidental
learning conditions is consistent with the idea that cue competition
relies on controlled reasoning processes.

Conclusion

The present data demonstrate that independent contextual cues of a
target location do not compete for learning resources. This result is
clearly inconsistent with associative learning accounts of cue compe-
tition that rely solely on error-driven learning mechanisms (Brady &
Chun, 2007; Rescorla & Wagner, 1972). Although other associative
learning models may, in principle, be able to account for an absence
of cue competition by appealing to attentional mechanisms (e.g.,
Mackintosh, 1975; Pearce & Hall, 1980), the current data are clearly
consistent with the idea that cue-competition effects in human learn-
ing are observed only when higher order reasoning processes are
engaged (i.e., standard HCL tasks). Our data not only suggest that cue
competition did not occur but that learning may even be enhanced
when these cues are trained in compound. Such effects are inconsis-
tent with the predictions of Brady and Chun’s (2007) model. Future
work will explore, both empirically and computationally, associative
mechanisms that allow for augmentation effects in contextual cue
learning.
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Appendix

Technical Details of the Brady and Chun (2007) Model

Two sets of weights connect input and output units. The fixed
weights impose spatial constraints reflecting an attentional spot-
light surrounding the target, such that the model learns more about
distractors that occur nearest to the targets on repeating trials. The
fixed weights are derived from an exponential function of the
distances between stimuli:

FWoi � S � e�doi, (A1)

where FW is the fixed weight, doi is the number of matrix locations
between input unit i and output unit o, and S is a constant that
determines the diameter of the attentional spotlight.

The learned weights represent the associations between the
stimulus positions and the target locations. A large weight between
input unit i and output unit o reflects the model’s prediction that
the presence of a stimulus at location i predicts the occurrence of
the target stimulus at location o.

On each trial, the pattern of activation on the input units is fed through
the weights to produce a pattern of activation on the output units:

ino � ��ai � LWoi � FWoi� � �o, (A2)

ao �
1

1 � e�ino
, (A3)

where ino is the summed activation passed to output unit o from
the input units; ai is the activation of input unit i; LWoi and FWoi

are the learned weight (or association) and the fixed weight,
respectively, between input unit i and output unit o; �o is a
bottom-up activation term, which ensures higher activation values
to output units representing locations in which stimuli are present;
ao is the activation of output unit o.

The learned weights are adjusted using a form of the delta rule:

�o � � � ao, (A4)

��LWoi
t �  � �o � ao � ai � � � ��LWoi
t�1, (A5)

where �o is the prediction error of output unit o, determined by the
difference between the expected value of the output unit, �, and the
actual activation of output unit o, ao. In Equation A5,  is a
learning rate parameter determining the contribution of the current
prediction error to the weight change, ai is the activation of input
unit i, and � is a momentum term that determines how much the
previous weight change (t � 1) contributes to the direction and
magnitude of the current change (t).
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