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Two experiments used eye-tracking procedures to investigate the relationship between attention and
associative learning in human participants. These experiments found greater overt attention to cues
experienced as predictive of the outcomes with which they were paired, than to cues experienced as
nonpredictive. Moreover, this attentional bias persisted into a second training phase when all cues were
equally predictive of the outcomes with which they were paired, and it was accompanied by a related bias
in the rate of learning about these cues. These findings are consistent with the attentional model of
associative learning proposed by Mackintosh (1975), but not with that proposed by Pearce and Hall
(1980).
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One of the primary aims of associative learning theory is to
establish the factors that determine how much we learn about a
given stimulus or event under a given set of circumstances.
Phrased differently, the question becomes: under a given set of
circumstances, why do we learn more about some stimuli than
about others?

One source of biases in learning, first established in studies of
nonhuman animals (see Hall, 1991; Le Pelley, 2004, for reviews),
and more recently studied in humans (e.g., Beesley & Le Pelley,
2010; Bonardi, Graham, Hall, & Mitchell, 2005; Kruschke, 1996;
Le Pelley, Beesley, & Suret, 2007; Le Pelley & McLaren, 2003; Le
Pelley, Reimers et al., 2010; Le Pelley, Schmidt-Hansen, Harris,
Lunter, & Morris, 2010) relates to the experienced predictiveness
of stimuli: that is, the ability of a cue stimulus to predict the
occurrence of events of significance (such as rewards or punish-
ments). Specifically, experience of the predictiveness of a cue
seems to influence the rate of future learning about that cue,
termed its associability.

Such findings have often been taken as support for models of
learning in which the amount of learning that a given cue under-
goes on a trial is modulated by a variable associability parameter,
� (e.g., Kruschke, 2001, 2003; Le Pelley, 2004; Mackintosh, 1975;
Pearce & Hall, 1980). This � parameter is itself a learned value

which changes with experience of the cue’s predictiveness. For
example, Mackintosh’s model (1975; see also Kruschke, 2001,
2003) proposes that a cue that is the best available predictor of the
outcome with which it is paired (i.e., the cue with the highest
predictiveness) will maintain a high �, while the � of all other cues
will decline. In contrast, Pearce and Hall (1980; hereafter “the
Pearce-Hall model”) suggested that cues that are followed by
unpredicted outcomes will tend to maintain a higher � than those
that are followed by well-predicted outcomes. The relationship
between predictiveness and associability in animals seems to be
rather complex (see Le Pelley, 2004; Le Pelley, Turnbull, Reimers,
& Knipe, 2010), but in studies of human contingency learning the
typical finding is that cues previously experienced as having high
predictiveness are learned about more rapidly than less predictive
cues. This pattern is consistent with the view taken by Mackin-
tosh’s model, but not with the approach suggested by Pearce-Hall.

As an example, we will consider the study of human contin-
gency learning by Le Pelley and McLaren (2003), which forms the
basis of the current research. Table 1 shows the design of this
study. Letters A–D and V–Y in Table 1 refer to different cues and
o1–o4 to different outcomes, for example, “AV–o1” indicates that
cues A and V were presented together, and that the correct out-
come prediction was outcome o1.

During Stage I, cues A–D were predictive of the outcomes with
which they were paired on each trial (A and D were consistently
paired with o1; B and C with o2). Cues V–Y were nonpredictive,
being paired equally often with o1 and o2. Over several blocks of
Stage I training, participants learned to predict the correct outcome
on each trial.

In Stage II, compounds of a previously predictive and previ-
ously nonpredictive cue were paired with novel outcomes o3 and
o4. The objective statistical contingency between previously pre-
dictive cues (A–D) and Stage II outcomes was identical to that
between previously nonpredictive (V–Y) cues and those same
outcomes. For example, both A and X were paired with o3 an
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equal number of times, on exactly the same trials. Despite this
objective equivalence, in a final test, participants in Le Pelley and
McLaren’s (2003) study rated compounds AC and BD as signifi-
cantly more predictive of outcomes o3 and o4, respectively, than
were compounds VX and WY. This implies that, during Stage II,
participants had learned cue–outcome associations more rapidly
for previously predictive cues than for previously nonpredictive
cues. That is, the associability of predictive cues A–D was higher
than that of nonpredictive cues V–Y (see also Le Pelley, Suret, &
Beesley, 2009).

This result is clearly consistent with the Mackintosh model’s
view of the relationship between predictiveness and associability.
However, it is inconsistent with the view taken by the Pearce-Hall
model. In its original formulation, the Pearce-Hall model uses a
summed error term in the calculation of associability; as a conse-
quence, what is crucial for determining associability is not how
surprising the outcome is given the presence of an individual cue,
but rather how surprising the outcome is given the combination
(compound) of all currently presented cues. In the design shown in
Table 1, all Stage I compounds are equally predictive of their
respective outcomes, and hence the outcome occurring on each
Stage I trial is equally surprising. Consequently, the original
Pearce-Hall model predicts that all cues will have equal associa-
bility throughout the experiment. In a recent development of the
model, Pearce and Mackintosh (2010) have suggested that asso-
ciability might instead be governed by the predictiveness of each
individual cue. However, since this model retains the fundamental
principle of the Pearce-Hall model—that cues which are poor
predictors of outcomes retain a high associability—this modified
model is also unable to account for the findings of Le Pelley and
McLaren’s experiment, since it predicts that cues that are individ-
ually nonpredictive (i.e., cues V–Y) will maintain a higher asso-
ciability than cues that are individually predictive (cues A–D)
during Stage I. Hence the model incorrectly anticipates faster
learning about V–Y than about A–D during Stage II.

The results of experiments such as that of Le Pelley and
McLaren (2003) support the suggestion that the associability of a
cue can be influenced by the previously experienced predictive-
ness of that cue. Some associability-based models go further,
however, in suggesting that the associability of a cue is determined
by the attention paid to that cue. Kruschke (2001, 2003) in partic-
ular was explicit in stating that (i) the amount of attention paid to

a cue will be influenced by the experienced predictiveness of that
cue, and (ii) this learned attention will influence the subsequent
rate of learning about the cue, such that strongly attended cues will
have a higher associability (and therefore will be learned about
more rapidly) than weakly attended cues. Despite labeling his
model “A theory of attention,” Mackintosh (1975) remained ag-
nostic on whether associability should be identified with attention;
he argued that the mechanism underlying the model “may justify
characterizing the present set of ideas as a theory of attention, but
since that term has a number of connotations, it might be better to
stress that what I am proposing is a theory about the associability
of stimuli with reinforcement” (p. 294).

It is this idea that the term attention has a number of connota-
tions that is of central importance. This is because paying greater
attention to a cue would imply not only more rapid subsequent
learning about that cue, but also all of the other consequences of
attention previously established in the cognitive psychology liter-
ature (see Wright & Ward, 2008, for a review). The problem is that
the vast majority of previous studies that have been taken as
support for a relationship between attention and learning have
relied entirely on rate of learning as a measure. As a result, this
evidence cannot distinguish between an account in which predic-
tiveness influences attention (as the term is understood by cogni-
tive psychologists), and an account in which it merely determines
the rate of learning about a cue (see Honey, Close, & Lin, 2010, for
an example of this latter type of account, in which changes in
learning rate are not driven by changes in attention).

The question, then, is whether changes in the associability of
cues that result from differences in their predictiveness are accom-
panied by changes in the attention paid to those cues. In order to
address this question, we need to measure the influence of predic-
tiveness on aspects of stimulus processing (other than rate of
learning) that have been established in the cognitive psychology
literature as diagnostic of attention. Perhaps the most obvious
feature of visual attention is that it tends to coincide with where
our eyes are looking. It is, of course, possible to make covert shifts
of attention that are not accompanied by eye movements (Posner,
1980). Nevertheless, eye movements and attentional shifts are
generally tightly coupled (Deubel & Schneider, 1996), especially
when dealing with relatively complex stimuli such as words.

Certain previous studies have examined the relationship be-
tween overt attention, as measured by eye gaze, and predictive-
ness. For example, studies of categorization by Rehder and Hoff-
man (2005a; 2005b) showed that participants spent more time
looking at cues that were more diagnostic of category membership
(that is, cues that were more predictive) than those that were less
diagnostic. Related findings have been reported by Hogarth and his
colleagues (Hogarth, Dickinson, & Duka, 2009; Hogarth, Dickin-
son, Hutton, Elbers, & Duka, 2006; Hogarth, Dickinson, Wright,
Kouvaraki, & Duka, 2007); in studies of contingency learning
using rewarding outcomes such as money, participants maintained
attention for longer on cues that were more predictive of the
delivery of this reward. Such findings of greater overt attention to
more predictive cues are consistent with the view taken by Mack-
intosh’s theory, but run counter to the Pearce-Hall model.

All of these previous studies measured differences in the overt
attention to cues during training phases in which these cues dif-
fered objectively in their predictiveness. Recall from earlier, how-
ever, that Le Pelley and McLaren’s (2003) study demonstrated a

Table 1
Design of the Experiments

Stage I Stage II Test

AV–o1 AX–o3 AC
AW–o1 BY–o4 BD
BV–o2 CV–o3 VX
BW–o2 DW–o4 WY
CX–o2
CY–o2
DX–o1
DY–o1

Note. Letters A–D and V–Y refer to different cues; o1–o4 refer to
outcomes. On test, ratings of the cue compounds shown were obtained with
respect to outcomes o3 and o4. All participants experienced all types of
trial listed under a given stage of training.
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difference in the rate of learning about cues during a phase of the
experiment (Stage II in Table 1) in which all cues were objectively
equally predictive of the outcome with which they were paired; the
only difference between these cues was in terms of their prior
predictiveness during Stage I. In order to account for such find-
ings, attentional theories must assume that an uneven attentional
distribution arising as a result of differences in Stage I predictive-
ness can persist into Stage II, and hence bias what is learned away
from the objective statistical cue–outcome relationships that are
present in the data. These models therefore anticipate that differ-
ences in the associability of cues will be accompanied by differ-
ences in attention to those cues, but the studies of eye tracking
described above do not allow us to assess this prediction.

Indeed, Hogarth, Dickinson, and Duka (2010) have recently
argued that the attentional mechanism that determines the associa-
bility of a cue (which they term “looking-for-learning”) might be
quite separate from the attentional mechanism implicated in their
studies using monetary rewards that are described above. Specif-
ically, they argued that looking-for-learning will operate according
to the principles of the Pearce-Hall model. This claim was based
on the results of an experiment by Hogarth, Dickinson, Austin,
Brown and Duka (2008), which used an evaluatively neutral out-
come (a 50 dB tone). In their design, a compound of cues A and
X was always followed by the outcome (AX�), C and X were
never followed by the outcome (CX–), and B and X were followed
by the outcome on 50% of presentations (BX�/–). Thus A and C
were consistent predictors of reinforcement and nonreinforcement
respectively, while B was a poor predictor. Differences in attention
to these cues were assessed by comparing eye gaze to the unique
cue on each trial (A, B, or C) with eye gaze to the common cue
(X). Overall, Hogarth et al. (2008) found that participants spent
longer looking at the unique cues than the common cue on all three
types of compound trial. However, this bias in eye gaze was
greater on BX trials, compared to AX and CX trials. The impli-
cation is that overt attention was greater to less predictive cues
than to more predictive cues (since B was an inconsistent predictor
of the outcome, while A was a consistent predictor of reinforce-
ment and C was a consistent predictor of nonreinforcement).

The problem is that, once again, while Hogarth et al. (2008)
showed a difference in overt attention to cues that differed in their
objective predictiveness, they did not demonstrate that this differ-
ence in attention was related to a difference in the associability of
the cues involved. That is, they did not assess the rate of novel
learning about cues A, B, and C after the training described above,
to verify that this too followed the predictions of the Pearce-Hall
model. And indeed, as noted earlier, the majority of studies that
have examined the influence of predictiveness on learning rate
have instead found support for Mackintosh’s theory (e.g., Bonardi
et al., 2005; Kruschke, 1996; Le Pelley & McLaren, 2003).

To the best of our knowledge, only one previous study has
measured the influence of predictiveness on both overt attention
and associability within a single experiment. In a study of the
blocking effect in contingency learning, Beesley and Le Pelley
(2010) found that predictiveness did indeed exert a similar biasing
influence on both eye gaze and rate of novel learning. Moreover,
participants showing a larger influence of predictiveness on eye
gaze also showed a larger influence of this variable on learning
rate. However, we noted that these findings were explicable in
terms of the relationship between predictiveness and attention

suggested by both the Pearce-Hall and Mackintosh models, and
hence could not decide between these different approaches.

Experiment 1

The aim of the current research was to examine the relationship
between eye gaze and learning rate as measures of the influence of
predictiveness, using a design that would allow us to distinguish
between these different classes of attentional theory, and hence to
test the claim made by Hogarth, Dickinson, & Duka (2010) that
looking-for-learning operates according to the principles of the
Pearce-Hall model. Specifically, these experiments used the
“learned predictiveness” design of Le Pelley and McLaren (2003),
shown in Table 1, while gaze location was monitored with an eye
tracker. This allowed us to assess the general prediction of atten-
tional theories of associative learning, that differences in the as-
sociability of cues during Stage II will be accompanied by differ-
ences in attention. More importantly, it enables us to establish
whether any changes in overt attention that do occur follow the
predictions of the Mackintosh model in particular, in which case
we should observe greater overt attention to predictive cues.

Le Pelley and McLaren’s original study used a rather concrete
food allergy paradigm involving causal relationships between
foods and allergies. Consequently, participants will be familiar
with the cues and outcomes used in this design, and may have
preconceived theories about causal relationships between them. In
contrast, the previous studies of eye tracking cited above used
more abstract procedures. For example, Hogarth et al. (2008) used
arbitrary stimuli (snowflake-like visual patterns) with an auditory
outcome (a white noise) in a predictive (rather than causal) learn-
ing design, making it unlikely that participants would bring any
preconceived ideas to the experiment. In order to provide a closer
comparison between our experiments and those reported previ-
ously, the current experiments used an abstract contingency learn-
ing procedure that was loosely based on these prior studies. Spe-
cifically, cues were nonsense words, and outcomes were
distinctive sounds.

Method

Participants, apparatus and stimuli. Twenty-one Cardiff
University students participated in exchange for course credit. The
experiment was conducted using a Tobii 1750 Eye Tracker (Tobii
Technology, Danderyd, Sweden)—a 17” (43.2 cm) monitor with a
monitor-mounted eye tracker capable of recording eye gaze at a
resolution of 50Hz. This offers a nonintrusive method of eye
tracking and is able to compensate for small head movements.
Participants sat approximately 60 cm from the screen. Stimulus
presentation was controlled by a Visual Basic program, with
timing determined by Windows API functions QueryPerformance-
Counter and QueryPerformanceFrequency for millisecond resolu-
tion. Error signals were given over speakers.

The eight nonsense words, which acted as cues, were Conneas-
tal, Dusapplity, Forditic, Holomoram, Luthinity, Miniputan, Pour-
plectly, and Slatorion. These were randomly assigned to letters
A-D and V-Y in the design shown in Table 1 for each participant.
The four outcomes were brief (�.5s) sound clips of a splash,
boing, squeak or zap. These were randomly assigned to outcomes
o1–o4 for each participant.
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Procedure and data analysis. Instructions stated that on
each trial two words would be presented on-screen, that partici-
pants’ task was to predict which sound would follow each pair of
words, and that feedback would be provided. All responses during
the experiment were to be made with the right-hand index finger.

Figure 1A shows a typical Stage I training trial. The two words
were presented in white rectangles measuring 9.5 cm � 6.75 cm
on screen (visual angle approximately 9° � 6.4°), which were
arrayed vertically in the center of the screen, separated by 9.2 cm
(�8.8°). Participants made their prediction as to which of two
sounds would occur using the left or right arrow keys to indicate
o1 or o2, respectively. Once participants had made their response,

a white frame appeared around the outcome they had chosen, and
after a delay of 600 ms the appropriate outcome sound was
presented over headphones. After a further 1000 ms the word
“Correct” (in green) or “Wrong” (in red) appeared in the center of
the screen as appropriate, and remained for 1300 ms, after which
the trial ended and the screen was cleared. Cue words remained
on-screen throughout the trial.

Following Stage I, participants were told that in the next training
phase the same words would be presented in new pairings along
with two new sounds, and that again their task was to predict
which sound would occur after each pair of words. On each Stage
II trial (see Figure 1B) the words were arranged horizontally in the

Figure 2 

Figure 3 

A 

B 

Figure 1. Screenshot of a typical training trial from (A) Stage I, and (B) Stage II of Experiment 1.
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vertical center of the screen, separated by 11 cm (�10.5°). Re-
sponses were now made with the up and down arrow keys to
indicate o3 and o4, respectively. Combined with the fact that all
responses in the experiment were made with the same finger, this
ensures that responses in Stage II were orthogonal to those in Stage
I. This was intended to reduce any noise resulting from carryover
of knowledge regarding Stage I responses. That is, knowing that a
particular cue was associated with a “left arrow” response in Stage
I is of no use in deciding whether it will be associated with an up
or down response in Stage II.

Stages I and II consisted of 18 and 6 blocks, respectively, with
each of the trial types of each stage (see Table 1) occurring once
per block. Trial order within a block was randomized, with the
constraint that there could be no immediate repetitions across
blocks. For each trial type, the left/right order of presentation of
the cues in Stage I, and top/bottom order in Stage II, was coun-
terbalanced across blocks. For example, for trial type AV–o1 in
Stage I, there would be four presentations with cue A to the left of
cue B, and four presentations with B to the left of A (the order of
these presentations was randomized). The eye tracker was cali-
brated using a 9-point procedure at the start of the experiment and
again after the 12th block of Stage I.

On the first test trial, two cue words appeared at the top of the
screen, above a box containing the name of sound o3. Participants
clicked on this box to play sound o3, which also brought up a
rating scale from 0 (very unlikely) to 10 (very likely), which they
used to rate how likely this sound was to follow the words shown
at the top of the screen. On the immediately succeeding test trial,
participants rated the same cues with respect to outcome o4.
Participants provided ratings for all of the test compounds shown
in Table 1 in similar fashion, and in a random order.

Data analysis. Following Le Pelley and McLaren (2003),
these ratings were used to calculate difference scores for each
compound. This was done by taking the rating for each compound
with respect to the outcome (o3 or o4) with which its constituent
cues were paired in Stage II, and subtracting from that the rating
for the same compound with respect to the outcome with which its
cues were not paired in Stage II. For example, the difference score
for AC is given by the rating for AC with respect to o3 minus the
rating for AC with respect to o4, because A and C were paired with
outcome o3 during Stage II. Likewise, the difference score for BD
is given by BD’s rating for o4 minus its rating for o3, because B
and D were paired with o4 during Stage II. These difference scores
index the differential predictiveness of compounds with respect to
Stage II outcomes—the extent to which a compound predicts the
outcome with which it was paired in Stage II more than it predicts
an outcome with which it was not paired. High difference scores
(maximum � 10) indicate strong, selective performance, while a
difference score of zero indicates no selective performance.

These difference scores are free from influences of generaliza-
tion that would render any analysis based on raw rating data
uninterpretable. Consider Stage I training, in which participants
learn that A predicts o1, while X is not predictive of o1 or o2.
Suppose that, immediately after Stage I, participants were asked
how strongly cues A and X predict outcome o3. As o3 is novel at
this point, neither cue will have a direct association with it.
However, o3 has some similarity to o1 (both are sounds). Thus
participants might generalize from the knowledge that A predicts
o1 to also assume that it also predicts o3. Similarly, they might

generalize from X’s nonpredictive status with respect to o1/o2, to
think that it will also not predict o3. So on the basis of general-
ization, and in the absence of further training, participants might
perceive A as more predictive of o3 than is X. More generally,
using raw ratings could generate a spurious difference in respond-
ing to previously predictive and previously nonpredictive cues that
has nothing to do with differences in associability.

Using difference scores allows us to disentangle responding
based on direct learning from that based on generalization. Sup-
pose that, in our hypothetical single-stage experiment, we also
asked people how strongly A predicted o4. Random assignment of
sounds to outcomes o1–o4 in Table 1 ensures that, on average, o1
will be as similar to o3 as it is to o4, so that generalization from o1
to o3 is equal to that from o1 to o4. Therefore, if perception of A
as a predictor of o3 were purely a consequence of generalization
from its association with o1, we would expect an equally high
rating for the A–o4 relationship (yielding a difference score of
zero). If, however, participants rated A as a better predictor of o3
than of o4 (yielding a nonzero difference score), this would indi-
cate that the A–o3 rating is not simply based on generalization, but
that there is also a direct association between A and o3. The
stronger this direct association, the greater the magnitude of the
difference score.

Eye-gaze location was recorded every 20 ms for each eye
independently. However, the eye tracker was occasionally unable
to register gaze location for one or both eyes (e.g., as a result of
blinks, head movements, etc.), resulting in missing gaze data. For
each participant, the proportion of missing data for each eye was
calculated across Stages 1 and 2, and gaze data from the eye with
less missing data were used for all further analyses. Analyses of
eye gaze reported below were based on dwell time, where the
dwell time on a cue was defined as a recording of gaze within the
white rectangular area surrounding the cue name (see Figure 1),
and was summed across the period from cue onset to the detection
of a valid response. Trials with response latencies greater than 10
seconds were not analyzed.

Results

The eye tracker could not be calibrated for two participants, so
they were excluded from further analysis. We could only hope to
observe an effect of Stage I predictiveness on learning and atten-
tion during Stage II if participants were able to learn the cue–
outcome relationships during Stage I. Following Le Pelley and
McLaren (2003), a selection criterion of 60% correct responses
averaged across all Stage I trials was imposed (chance � 50%
correct). One participant failed to achieve this criterion, and hence
this participant’s data were excluded from further analysis. For the
remaining participants, the mean proportion of missing data for the
“better” eye was 7.3% (SD � 3.2%).

Judgment data. Participants were clearly able to learn the
correct cue–outcome relationships; mean percent correct across all
trial types rose to 91.0% in the final block of Stage I training, and
91.7% in the final block of Stage II. The mean difference score—
derived from test-phase ratings as described above—for com-
pounds AC and BD (which both comprise cues that were predic-
tive during Stage I) was 6.44, while that for compounds VX and
WY (which both comprise cues that were nonpredictive during
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Stage I) was 4.08. This difference was significant, t(17) � 2.27,
p � .05.

Eye gaze data. Mean response latency for analyzed trials in
Stage I was 2112 ms, and in Stage II was 2140 ms. Figure 2 shows
mean dwell times on cues summed across the period from cue
presentation to response. These data have been collapsed across all
trials of each training stage, and are shown separately for predic-
tive (A–D) and nonpredictive (V–Y) cues. Repeated measures
analysis of variance (ANOVA) with factors of predictiveness and
training stage revealed a significant main effect of predictiveness,
F(1, 17) � 14.4, p � .01, with greater dwell time on predictive
cues than on nonpredictive cues. The predictiveness � training
stage interaction was nonsignificant, F � 1. Preplanned paired t
tests revealed that dwell time on predictive cues was significantly
greater than on nonpredictive cues during both Stage I, t(17) �
3.07, p � .01, and Stage II, t(17) � 3.46, p � .01. This confirms
an attentional bias toward predictive cues in each stage. There was
also a significant main effect of training stage, with greater dwell
times in Stage I than in Stage II, F(1, 17) � 37.8, p � .001. This
decrease in dwell time over the course of training presumably
reflects participants’ increased familiarity with the task in general,
allowing them to make predictions more rapidly and thus decreas-
ing the window over which dwell time is summed (notably mean
dwell time also fell over the course of training within each stage,
rather than just between stages). Moreover, increasing familiarity
with the limited set of cues would allow participants to make these
responses on the basis of an increasingly rapid assessment of the
presented information; for example, if participants gradually learn
that “Conneastal” is the only cue that begins with the letter C, they
may move from reading the whole cue name on each trial to
making a particular response as soon as they note that the cue
name begins with the letter C.

It seems plausible that there will be individual differences in the
extent to which participants distribute attention unequally between
the elements of a stimulus compound (e.g., see Beesley & Le
Pelley, 2010; Kruschke, Kappenman, & Hetrick, 2005; Le Pelley,
Schmidt-Hansen et al., 2010; Wills, Lavric, Croft, & Hodgson,
2007). Recall that, according to attentional theories of learning, the
influence of predictiveness on learning rate is mediated by atten-

tion. Specifically, those participants showing the greatest atten-
tional advantage for predictive cues over nonpredictive cues dur-
ing Stage II (assessed by eye gaze) should also show the greatest
difference in learning about these cues (as assessed by rating
difference scores).

For each participant, we calculated: (i) the predictiveness effect
observed on our attentional measure (given by mean dwell time on
predictive cues minus mean dwell time on nonpredictive cues,
collapsed across all Stage II trials); and (ii) the predictiveness
effect observed on our learning measure (mean difference score for
compounds AC/BD minus mean difference score for compounds
VX/WY). The correlation between these measures was significant,
Spearman’s rs(18) � .45, p � .032 (one-tailed, since a positive
correlation is explicitly anticipated).

Discussion

Consistent with the findings of Le Pelley and McLaren (2003),
Experiment 1 revealed evidence for better learning about previ-
ously predictive cues than previously nonpredictive cues during
Stage II. Thus, it would seem that the difference in the experienced
predictiveness of these cues during Stage I induced a change in
their associability, resulting in a biased pattern of learning.

Crucially, the eye-gaze data of Experiment 1 are consistent with
the suggestion that this change in associability reflects a change in
attention to the cues involved. The finding of greater overt atten-
tion to predictive cues than nonpredictive cues during Stage I
(when these cues differed objectively in their predictiveness)
agrees with the findings of prior studies (e.g., Rehder & Hoffman,
2005a) indicating that participants devote more attention to cues
that are more diagnostic of category membership. The current data
extend such findings by demonstrating that this unequal attentional
distribution can persist into a training phase in which all cues have
objectively equal predictiveness: a similar attentional bias toward
previously predictive over previously nonpredictive cues was ob-
served in Stage II, despite the statistical cue–outcome relation-
ships being identical for both classes of cue. This pattern of results
fits well with the predictions of attentional theories of learning, and
provides a clear example of a statistically non-normative bias in
overt attention. It was also found that those participants showing a
greater bias in eye gaze during Stage II showed a correspondingly
greater bias in what they learned about the cues involved, which
further supports the general contention of attentional theories that
biases in what is attended and what is learned are intimately
related. This correlation is a pattern that we have replicated in
unpublished work with the design used here, and in the context of
the blocking effect (Beesley & Le Pelley, 2010).

The general finding of greater attention to, and more rapid
learning about, predictive cues than nonpredictive cues follows the
principles of Mackintosh’s theory. While it is difficult to compare
the sizes of effects at different points on the performance scale,
Figure 2 indicates that the size of the attentional bias toward
predictive cues in Stage II is at least as great as that in Stage I. This
finding is again consistent with Mackintosh’s theory, because it is
the learned predictiveness of cues, rather than their objective
predictiveness, that determines attention in this theory. Specifi-
cally, the model anticipates that the greater attention to predictive

Figure 2. Preresponse dwell time on predictive and nonpredictive cues,
averaged across the training blocks of each stage of Experiment 1.
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cues (e.g., cue A) following Stage I will fuel more rapid learning
about these cues on the initial Stage II trials. Consequently, cue A
will rapidly come to be perceived as more predictive of outcome
o3 than is cue X. Since the Mackintosh model states that attention
to cues with a higher learned predictiveness rises, while attention
to cues that are perceived as poor predictors falls, the result will be
that the attentional bias to cue A over cue X will further increase
(or at least be maintained, if it has reached ceiling levels). Effec-
tively, the Mackintosh model implements a positive feedback loop:
a rise in attention produces faster learning, which in turn fuels a
further rise in attention.

While the finding of greater attention to, and more rapid learn-
ing about, predictive cues than nonpredictive cues follows natu-
rally from Mackintosh’s theory, it is clearly inconsistent with the
Pearce-Hall model. Consequently, our attentional data directly
conflict with the suggestion made by Hogarth, Dickinson, & Duka
(2010) that the looking-for-learning mechanism will follow the
Pearce-Hall model. In some sense this is unsurprising. The general
proposal of attentional theories of learning is that differences in
associability will arise as a result of differences in attention and, to
the best of our knowledge, all previous studies of associability
effects in humans that are able to discriminate between these two
models have favored Mackintosh’s theory (see Le Pelley, Turnbull
et al., 2010, for further discussion of this issue). Thus we might
well expect, a priori, that attention, too, would follow the princi-
ples of this theory.

One question remains, however. Why did the relationship be-
tween predictiveness and attention in the current study (and those
of Rehder & Hoffman, 2005a, 2005b) follow Mackintosh’s theory,
while in a seemingly similar study, Hogarth et al. (2008) instead
found evidence consistent with the Pearce-Hall model? One pos-
sibility lies in a difference in the temporal arrangement of training
trials. On each trial of Hogarth et al.’s experiments, a pair of cues
was presented, along with an expectancy question asking partici-
pants to enter a numerical rating relating to how likely they
thought an auditory outcome was to follow these cues. When
participants had entered their rating, this expectancy question
disappeared and the cues remained on-screen for a further 5
seconds. If the auditory outcome was scheduled to occur on this
trial, it would then occur at a random point during the final 4
seconds of this period. Hence there was a variable and relatively
long response–outcome delay, whereas in the current Experiment
1 (and Rehder & Hoffman’s studies) this was fixed and short.
Moreover, in Hogarth et al.’s studies, dwell time on cues was
summed across a window of 5 seconds starting from cue presen-
tation. This means that, if participants entered their expectancy
rating within 5 seconds of cue onset, the dwell time window would
also include a postresponse period (and could even include a
postfeedback period). In contrast, in Experiment 1 (and Rehder &
Hoffman’s studies) dwell time was summed only across the win-
dow from cue onset to response. This raises the possibility that the
attentional distribution between cues might change across the
course of the trial, with a preresponse bias toward more predictive
cues, and a postresponse bias toward less predictive cues. In
Hogarth et al.’s data, the influence of the postresponse bias might
outweigh the preresponse bias, producing an overall bias toward
less predictive cues.

Experiment 2

These issues were investigated in Experiment 2, which used a
variable response–outcome delay to allow us to investigate the
attentional distribution across cues in pre- and postresponse win-
dows. Given that the crucial focus of this experiment was the direct
relation between predictiveness and attention, for simplicity Ex-
periment 2 involved only the Stage I training phase from Table 1,
which is most directly comparable to Hogarth et al.’s study (in that
there are objective differences in the predictiveness of the cues
under consideration).

Method

Participants, apparatus and stimuli. Fourteen Cardiff Uni-
versity students participated for course credit. Apparatus and stim-
uli were as for Experiment 1, and used a randomly chosen two of
the four possible auditory outcomes from that experiment.

Procedure and data analysis. The procedure was as for
Stage I training of Experiment 1, the only change being that the
interval between participants’ keypress response and presentation
of the auditory outcome could be of duration 1200 ms, 2400 ms,
3600 ms, or 4800 ms. In each block of eight trials, each of these
durations was used twice, in random order. Analysis of eye-gaze
data was as for Experiment 1.

Results

For one participant, the proportion of missing data for the
“better” eye was greater than 20% and so (following Beesley & Le
Pelley, 2010) this participant was excluded from further analysis
(this participant was also the only one failing to reach the criterion
of 60% correct responding across Stage I). The mean percentage of
missing data in the better eye for the remaining 13 participants was
11.3% (SD � 4.4%). Stage I learning proceeded as expected, with
mean percent correct rising to 94.2% in the final block.

Mean response latency for analyzed trials was 2353 ms. In a first
analysis, dwell times on cues were summed across the period from
cue presentation to response. These dwell times were then aver-
aged across all training blocks, and across all response–outcome
intervals (since prior to response all these trials are equivalent).
Consistent with the results of Experiment 1, dwell time on predic-
tive cues (M � 775 ms) was significantly greater than on nonpre-
dictive cues (M � 711 ms) during this preresponse period, t(12) �
2.71, p � .05.

Figure 3 shows dwell times on cues for the period from response
to the end of the trial (which includes the variable response–
outcome interval, a subsequent fixed 1000 ms delay, and the 1300
ms during which feedback was displayed on-screen). Data are
shown separately for each response–outcome interval, and are
averaged across trial types and training blocks. Just as for the
preresponse window, dwell time was greater to predictive cues
than to nonpredictive cues. ANOVA with factors of interval (1200,
2400, 3600, and 4800 ms) and predictiveness (predictive cues vs.
nonpredictive cues) revealed a significant main effect of predic-
tiveness, F(1, 12) � 10.6, p � .01, that did not interact with
interval, F � 1. Analysis of the related data summed only across
the variable response–outcome interval (that is, the period follow-
ing a response but prior to the presentation of any feedback)
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yielded a very similar pattern of results: a significant main effect
of predictiveness, F(1, 12) � 7.38, p � .05 (with greater dwell
time for predictive cues than nonpredictive cues), that does not
interact with interval, F(3, 36) � 2.29, p � .095. In both of these
analyses, the main effect of interval was also significant, smaller
F(1, 12) � 125.2, p � .001, reflecting the fact that, for longer
intervals, dwell time is summed over a longer temporal window.

Discussion

Experiment 2 replicated the finding of greater overt attention to
predictive cues than to nonpredictive cues observed in the Stage I
data of Experiment 1. Notably this attentional bias toward predic-
tive cues persisted during the postresponse period. This would
seem to rule out the possibility that the difference between the
results of our experiments and those of Hogarth et al. (2008)
merely reflect a difference in the window over which dwell time
was summed. The data of Experiment 2 do not support the sug-
gestion that the attentional distribution between cues changes
across the course of the trial, with a preresponse bias toward more
predictive cues, and a postresponse bias toward less predictive
cues. Instead, there was an attentional bias toward more predictive
cues regardless of the analysis window that was used.

General Discussion

Two experiments examined the relationship between predictive-
ness and overt attention in human contingency learning. Experi-
ment 1 found an attentional advantage for predictive cues over
nonpredictive cues during an initial training stage, and a corre-
sponding difference in the rate of learning in a subsequent training
stage during which all cues were (statistically) equally predictive
of the outcomes with which they were paired. Notably, there was
also a bias in overt attention toward previously predictive cues
during this latter training stage, and there was a tendency for this

attentional bias to be greater in those participants who showed a
greater bias in learning.

These findings are clearly consistent with the dogma of atten-
tional theories of learning; namely that predictiveness influences
attention, which in turn influences rate of learning; in other words,
that attention is a determinant of associability. More specifically,
our data fit well with the relationship between predictiveness and
attention suggested by Mackintosh (1975; see also Kruschke,
2001), wherein cues that are relatively good predictors of the
outcomes with which they are paired tend to maintain greater
attention than cues that are poorer predictors. In contrast, our data
conflict with Pearce and Hall’s (1980) theory, which anticipates
equal attention to all cues in the current experiments, and Pearce
and Mackintosh’s (2010) recently proposed modification of this
theory, which anticipates greater attention to nonpredictive cues.

The current results also conflict with the findings of Hogarth et
al. (2008), who argued that their results implied an attentional bias
toward less predictive cues, consistent with the Pearce-Hall model.
Experiment 2 ruled out the suggestion that this discrepancy related
to differences in the window over which dwell time was summed
in these studies. So it remains unclear as to why such different
results were found in the two cases. One possible answer relates to
the complexity of the experimental designs. Our experiments were
relatively complex, using eight different trial types in Stage I.
Rehder and Hoffman’s (2005a, 2005b) studies, which also found
greater attention to more predictive cues, were more complex still,
using many different trial types featuring cue compounds contain-
ing either three or four stimulus elements (rather than two in the
current experiments). In contrast, Hogarth et al.’s study used only
three different trial types (AX, BX, and CX), and hence placed
considerably less cognitive load on participants. It has been sug-
gested that differences in the load under which people operate
might emphasize the role of different learning systems (De Hou-
wer & Beckers, 2003; Dickinson, 2001; Le Pelley, Oakeshott, &
McLaren, 2005). It would not seem unreasonable, then, to propose
that cognitive load might also influence the type of attentional
processes that modulate this learning. Under low load conditions,
participants might aim to accurately establish the predictive status
of every cue in the experiment, and hence devote maximal atten-
tion to those cues whose consequences are currently unclear (as
suggested by the Pearce-Hall model). Under high load conditions,
in contrast, participants may simply settle for getting as many
correct answers as possible (and hence avoiding irritating error
signals), and hence would pay attention to those cues which are
most diagnostic of the correct answer on each trial (as predicted by
the Mackintosh model). Future research will address this issue by
manipulating the cognitive load imposed on participants in a
learning task and observing any influence on the resulting pattern
of attention as measured by eye gaze.

An alternative possibility is to ascribe the difference between
the findings of these studies to the way in which eye gaze to
predictive and nonpredictive cues was compared. In the present
experiments (and those of Rehder & Hoffman) this comparison
was direct, in that these cues were presented simultaneously on
each trial. However, the approach used by Hogarth et al. to
compare the attentional bias to, say, A (consistently reinforced)
and B (partially reinforced) was indirect: it involved comparing
attention to A versus X on AX trials, and B versus X on BX trials,
and then comparing the magnitude of these two differences. It is

Figure 3. Dwell time on predictive and nonpredictive cues, averaged
across the training blocks of Experiment 2. Data are shown separately for
each response–outcome interval, and are calculated across the interval
from response to the end of the trial (which includes the variable response–
outcome interval, a subsequent fixed 1000 ms delay, and the 1300 ms
during which the “Correct” or “Incorrect” feedback was displayed on-
screen).
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possible that the pattern of eye gaze observed in this study was
influenced by the presence of the common cue X on every trial,
and that had A and B been presented simultaneously allowing for
a direct comparison, a different pattern of attention may have been
observed. In the absence of further evidence, however, this possi-
bility remains speculation.

Attentional theories of learning make two key assumptions: (1)
that predictiveness influences the attention paid to cues, and (2)
that this attention in turn modulates the subsequent rate of learning
about those cues (their associability). The current findings are
certainly consistent with both of these assumptions. Indeed, the
influence of objective differences in predictiveness on overt atten-
tion during Stage I demonstrates that the first assumption noted
above must be correct. However, a note of caution is required with
regard to the second of these assumptions. While our findings are
consistent with the idea that attention modulates learning rate
during Stage II, they do not provide unequivocal support for this
conclusion. This is because Stage II of our experiment has a
correlative design with regard to attention. In other words, we did
not manipulate attention and look at the effect on rate of Stage II
learning. Instead we manipulated predictiveness during Stage I,
and observed the influence of this on the rate of Stage II learning.
While we know that manipulating Stage I predictiveness has an
effect on attention, we cannot be certain that it is this difference in
attention that is driving the difference in learning during Stage II.

An example of an alternative account should make the problem
clear. Suppose that (i) predictiveness during Stage I influences a
nonattentional parameter, �, that determines the rate of learning
about a cue (such that predictive cues maintain higher � than
nonpredictive cues), and (ii) participants pay more attention to
cues that they perceive as more predictive (as indicated by the
Stage I data of the current experiments). The higher � of previ-
ously predictive cues A–D would promote more rapid learning
about these cues during Stage II. This would cause these cues to be
perceived as more predictive than are cues V–Y during Stage II,
and consequently, according to the second of the above assump-
tions, participants would come to attend more to cues A–D than to
cues V–Y. In contrast with the view taken by attentional theories
of learning, however, this latter account supposes that it is a
difference in learning rate that drives a difference in attention,
rather than vice versa.

This problem of establishing the direction of causality is inher-
ent in any attempt to test the hypothesized influence of attention on
learning using a correlative technique. In order to be sure of a truly
causal connection, an experimental approach is required. Suppose
that there exists a manipulation that will reduce the extent to which
a person is willing or able to use selective attention. If this
manipulation also reduces the influence of experienced predictive-
ness on the rate of novel learning, this would support the sugges-
tion that the influence of predictiveness on learning rate is via
attention. Identification and testing of such manipulations remains
a task for future research (see Le Pelley, 2010, for further discus-
sion of this issue).

It is worth reiterating that, notwithstanding the above, the relation-
ship between learned predictiveness and overt attention observed
during Stage I of the current experiments does demonstrate a causal
relationship. That is, changes in the learned predictiveness of cues
caused changes in the overt attention paid to those cues, and these
changes occurred in a manner that was consistent with the principles

of Mackintosh’s (1975) attentional theory of learning. Moreover,
these changes in attention were accompanied by changes in learning
rate that were also consistent with Mackintosh’s model. Conse-
quently, the current data support the suggestion that when associative
learning theorists and other cognitive psychologists talk about “atten-
tion,” they are indeed talking about the same thing.
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