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Goal-Directed and Habit-Like Modulations of Stimulus
Processing during Reinforcement Learning

David Luque, Tom Beesley, “Richard W. Morris, Bradley N. Jack, “Oren Griffiths, Thomas J. Whitford,
and Mike E. Le Pelley
School of Psychology, UNSW Australia, Sydney, New South Wales 2052, Australia

Recent research has shown that perceptual processing of stimuli previously associated with high-value rewards is automatically priori-
tized even when rewards are no longer available. It has been hypothesized that such reward-related modulation of stimulus salience is
conceptually similar to an “attentional habit.” Recording event-related potentials in humans during a reinforcement learning task, we
show strong evidence in favor of this hypothesis. Resistance to outcome devaluation (the defining feature of a habit) was shown by the
stimulus-locked P1 component, reflecting activity in the extrastriate visual cortex. Analysis at longer latencies revealed a positive com-
ponent (corresponding to the P3b, from 550 -700 ms) sensitive to outcome devaluation. Therefore, distinct spatiotemporal patterns of
brain activity were observed corresponding to habitual and goal-directed processes. These results demonstrate that reinforcement
learning engages both attentional habits and goal-directed processes in parallel. Consequences for brain and computational models of

reinforcement learning are discussed.
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ignificance Statement

The human attentional network adapts to detect stimuli that predict important rewards. A recent hypothesis suggests that the
visual cortex automatically prioritizes reward-related stimuli, driven by cached representations of reward value; that is, stimulus—
response habits. Alternatively, the neural system may track the current value of the predicted outcome. Our results demonstrate
for the first time that visual cortex activity is increased for reward-related stimuli even when the rewarding event is temporarily
devalued. In contrast, longer-latency brain activity was specifically sensitive to transient changes in reward value. Therefore, we
show that both habit-like attention and goal-directed processes occur in the same learning episode at different latencies. This
result has important consequences for computational models of reinforcement learning.
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Introduction

Animals and humans learn to make specific responses to acquire
rewards and avoid punishments. Awareness of an action’s conse-
quences allows the performer to rapidly and flexibly adapt their
behavior when the value of those consequences changes. Such
goal-directed behavior is especially evident in new learning. With
repeated experience of an invariant response—reward relation-
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ship, however, behavior may become more reflexive or habitual.
The expression of behavioral habits relies on the cached value of
S—R (stimulus-response) links so that, when the S is perceived,
the R is automatically elicited. Given that these S-R links do not
incorporate information about the current value of the out-
come, the resulting habitual behavior will be unaffected by recent
changes in outcome value. Therefore, behaviors that are shown to
be insensitive to posttraining alterations in the outcome value are
attributed to the operation of the habit system, whereas rapid
behavioral adaption to new outcome values is an index of the
operation of the goal-directed system (Balleine and O’Doherty,
2010).

Recent research suggests that it is not merely overt behavioral
responses that are modified by the formation of S-R habits, but
rather that habits can also shape how the perceptual system
allocates attention to (and thus prioritizes processing of) stimuli
(Anderson, 2016; Le Pelley et al., 2016). Specifically, if attentional
selection of a stimulus consistently yields high reward, then that
stimulus will become more likely to capture attention and this pri-
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Table 1. Experiment design

S—R—0 mapping Outcome value

S —R —0 No Dev Dev 0 9" Dev 0"

shon —R1 —Q"on +100 0 +100
—R2 —> Error! — — —

glow —R1 — Error! — — —
—R2 —Q'ow +1 +1 0

Columns on the left side of the table show the S~R—0 mappings that participants experienced. S™" and 5'°*
denote high-value and low-value stimuli. R1 and R2 denote Response 1and Response 2, which could be left or right
button presses depending on the counterbalancing condition. 0"%" and 0'°* denote high-value and low-value
outcomes. Given anincorrect response, no outcome was earned and an error feedback (Error!) was displayed instead.
Columns on the right side of the table show the different point values associated with the possible outcomes during
blocks in which neither outcome was devalued (No Dev), blocks in which the high-value outcome was devalued
(Dev 0 "9"), and blocks in which the low-value outcome was devalued (Dev 0 °*). Incorrect responses never earned
any points (denoted by —).

oritization will persist even if reward is now omitted and selection of
the stimulus becomes contrary to ongoing task goals. Consistent
with the notion that attention can be a habit just like other forms of
behavior, it has been shown that dopamine activity in the dorsolat-
eral striatum, which is crucial for the operation of the habitual sys-
tem (Yin et al., 2006; Balleine and O’Doherty 2010), is increased
when previously rewarded stimuli are presented as distractors in
attentional search tasks (Anderson et al., 2016).

Electrophysiological studies suggest that reward learning
produces relatively low-level changes in visual processing. The
occipital P1 is an early, visual event-related potential (ERP) com-
ponent (~100 ms after stimulus onset) that is produced by
activity in the extrastriate visual cortex and provides an index of
stimulus salience (Heinze et al., 1994; Hillyard et al., 1998; Di
Russo et al., 2002). Notably, stimuli paired with high reward elicit
a larger P1 than stimuli paired with low reward (Hickey et al.,
2010; MacLean and Giesbrecht, 2015). This suggests an influence
of reward on attention. One interpretation is that the visual cor-
tex uses the information provided by the habit-learning system to
increase its sensitivity to high-reward stimuli, effectively increas-
ing the (automatic) prioritization of these stimuli (MacLean and
Giesbrecht, 2015; Anderson, 2016; Pearson et al., 2016).

Although existing data are consistent with the possibility that the
habit system and early visual processing interact, habit-like stimulus
prioritization in the attentional network has not been tested directly.
The current experiment investigates this issue by assessing the sen-
sitivity to outcome devaluation of the reward-related, stimulus-
locked P1 effect. As noted earlier, the defining feature of an S-R habit
is that it persists despite transient changes in the incentive value of
the outcome (O). In an S—R-O reward-learning task, two stimuli
were associated with responses that produced either a high-value
outcome (OM8") or low-value outcome (O'°*) (100 or 1 points re-
spectively, where points had monetary value). Following previous
research, we expect greater P1 for stimuli associated with O"&"
(termed S"&") than O™ (S'°%; Table 1). Critically, in some blocks, a
specific outcome (either O™" or O'°") was devalued so that, during
that block, it was worth zero points (Table 1). If the reward-related
P1 effect reflects modulations by a habit-like signal, it should be
unaffected by this devaluation. In contrast, nonhabitual (i.e., goal-
directed) behavior will be sensitive to the value of the goal (outcome)
by definition, so activity relating to goal-directed processes should
differ between blocks with O"¢" devalued and blocks with
0'"" devalued.

Materials and Methods

Participants and apparatus. Twenty-four healthy adults (mean = SD; age,
27 * 8 years; two left-handed; 14 male) took part in exchange for a
monetary reward, which was dependent on the number of points earned
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at the end of the experiment ($30 AUD * $2 AUD). All participants
signed an informed consent form approved by the Human Research
Ethics Advisory Panel (Psychology) of UNSW Australia and were treated
in accordance with the Helsinki declaration. All reported normal or
corrected-to-normal vision.

Participants were tested individually in a cubicle using a standard PC
with a 23-inch monitor (1920 X 1280 resolution, 60 Hz refresh rate)
positioned ~100 cm from the participant. Stimulus presentation was
controlled with MATLAB (The MathWorks) using the Psychophysics
Toolbox extensions (Kleiner et al., 2007). Responses were made using an
Empirisoft DirectIN millisecond accurate keyboard. The apparatus for
EEG recording is described below.

Stimuli and task. Participants engaged in a trial-by-trial reinforcement
learning task. To implement the outcome devaluation manipulation, we
framed the learning task in a cover story. Participants played the role of
space traders, the mission of which was to trade cookies for diamonds
with two aliens. These aliens had two different types of diamonds and one
of them (the high-value outcome, oMk worth 100 points) was more
valuable than the other (the low-value outcome, 0" worth 1 point).
Participants were instructed that they should earn as many points as
possible and, at the end of the experiment they would receive $1 AUD for
every 1000 points they had earned. To implement the outcome devalua-
tion manipulation, participants were instructed that each type of dia-
mond needed to be stored in a different spaceship, but sometimes one of
these spaceships had to return to Earth. Participants could not store a
specific type of diamond while its corresponding spaceship was away, so
in these blocks, the new value for that type of diamond was zero regard-
less of its usual value. The status of the spaceships (present/absent) only
changed at the beginning of each block and participants were instructed
accordingly by a message on the screen. In no-devaluation (No Dev)
blocks, both diamonds could be stored and thus had their usual value. In
devaluation of the high-value outcome (Dev OPish) blocks, OM&! could
not be stored and thus was worthless (it gave 0 points), whereas olew
could be stored and thus still had value (albeit low value). In devaluation
of the low-value outcome (Dev 0"%) blocks, O'¥ could not be stored
and was worthless, whereas O"#" still had (high) value (Table 1).

Reinforcement learning trials consisted of S—-R—-O sequences. Back-
ground screen color was set to black throughout the task. Each trial began
with a central red fixation point presented for a random duration of
200-300 ms. One of two distinct “cookie” stimuli (SM" or §'°%) then
appeared at the center of the screen. These stimuli were easily discrim-
inable colored circles (3.3° diameter), each containing several smaller
circles of a different color (Fig. 1A). After 800 ms, pictures of two aliens
(~2.8 X 4°) appeared at either side of the screen (6.9° from the center on
the horizontal meridian). These aliens marked the two response options
(R1 and R2): participants chose the alien to which they wished to give the
cookie by pressing “q” or “p” to choose the left or right alien, respectively.
After a response, the screen blanked for 300 ms before outcome feedback
was presented in the center of the screen for 800 ms. If the response was
incorrect (Table 1), the message “Error!” appeared in red font. If the
response was correct, but the response time was slower than 2 s, the
message “Time out, please respond faster” appeared. If the response was
correct and faster than 2 s, one of two diamonds (OM&" or O'°%) appeared
(size 2.6 X 2.3°). One of these diamonds was colored yellow and the other
was blue. If, on any trial, participants responded before the aliens ap-
peared, the message “Too fast! No diamond for you!” appeared for 3 s.
For each participant, the specific pictures used as S"®" and S'** (cookies),
R1 and R2 (aliens), and O"#" and O'% (diamonds), were assigned fol-
lowing a Latin square counterbalancing design. The left/right position of
the aliens representing R1 and R2 was determined at random for each
participant at the beginning of the experiment.

The last screen on each trial varied between blocks. In No Dev blocks,
this screen showed the value of the diamond just earned (“+100” for
OMeh and “+1” for O'°). During devaluation blocks (Dev O™8" or Dev
0" blocks), this information was hidden for all trials (including con-
sumption trials; see below). As a cover story, before devaluation blocks,
participants were told that information about the value of the diamonds
was unavailable during these blocks due to solar interference (the final
screen of each trial showed “??” instead of value during devaluation
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Paradigm and behavioral results. A, Example of a learning trial. In this example, the participant earned the blue diamond by trading a pink cookie. The stimuli were counterbalanced

between participants. The last screen for each trial showed the diamond value, although only in no-devalued blocks. During devalued blocks, two question marks were shown instead. Correct
response to the stimulus (cookie) was rewarded with 100 or 1 points. B, Example of a consumption trial. Participants chose between the two diamonds. Feedback and value screens were as in
reinforcement learning trials. C, Behavioral results showing response time and accuracy data for reinforcement learning trials and proportion of high-value outcome (diamond) choice for
consumption trials. These results are divided into No Dev, Dev 0", and Dev 0" blocks. Error bars indicate within-participant SEM.

blocks; Fig. 1A), but that this solar interference did not affect the value of
the diamonds that they could earn. Trial-by-trial outcome values were
hidden during devaluation blocks to avoid the updating of outcome
values within the habit system (Tricomi et al., 2009; for a similar strategy,
see de Wit etal., 2009; Gillan et al., 2014, 2015). The next trial began after
an intertrial interval of 800 ms.

Consumption trials (Fig. 1B) were included in each block to provide
a behavioral assay of participants’ goal-directed behavior (Gillan et
al., 2015). Instructions at the beginning of the experiment noted that
sometimes the aliens become distracted and, on such occasions par-
ticipants could take one of the two types of diamonds without trading
it for cookies. On these consumption trials, the message “The aliens
seem distracted . . .” appeared for 1000 ms, followed by a countdown
(from 3 to 1) in the center of the screen (over 3 s). Then, the two
diamonds were presented, one to the left and the other to the right
(these positions were selected at random for each consumption trial),
and participants selected the desired diamond using the “q” or “p”
key. If participants responded before diamonds appeared, or response
time was >2 s, “too fast” or “time out” messages appeared as in

reinforcement learning trials. Outcome and value screens were also as
for reinforcement learning trials.

Each block comprised 27 trials: 12 learning trials with S"&", 12 learning
trials with $°%, and three consumption trials. Reinforcement learning trials
within each block were presented in a random order. Consumption trials
were presented as trial numbers 7, 14, and 21 within each block. The first
block was always a No Dev block and, after that, the order for the different
blocks followed a sequence: first a devaluation block in which the blue
diamond (which was OM" for half of participants and Q' for the other
half depending on counterbalance condition) was devalued, then a de-
valuation block in which the yellow diamond was devalued, and after that
a No Dev block. This sequence was repeated 10 times, resulting in 31
blocks in total.

At the end of each block, the participants could see how many dia-
monds they had earned in the preceding block, the total points value of
the diamonds earned in that block, and the total number of points they
had earned in the experiment so far. After this screen, a new block was
initiated with a screen informing the participant about what spaceship(s)
was available for the next block.
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EEG data acquisition. EEG was recorded with a Biosemi ActiveTwo
system from 64 Ag/AgCl active electrodes placed according to the ex-
tended 10-20 system (FP1, FPz, FP2, AF7, AF3, AFz, AF4, AF8, F7, F5,
F3, Fl1, Fz, F2, F4, F6, F8, FT7, FC5, FC3, FC1, FCz, FC2, FC4, FCe6, FT8,
T7,C5, C3,Cl, Cz, C2, C4, C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4,
CPe, TP8, P9, P7, P5, P3, P1, Pz, P2, P4, P6, P8, P10, PO7, PO3, POz,
PO4, POS, O1, Oz, 02, 1z). Vertical eye movements were monitored by
an electrode placed on the infraorbital ridge of the left eye; horizontal
EOG was recorded by placing an electrode on the outer canthus of each
eye. An electrode was also placed on the tip of the nose and on each
mastoid. During data acquisition, the reference was composed of CMS
and DRL sites and the sampling rate was 2048 Hz.

EEG preprocessing. Data preprocessing was performed using EEGLAB
(Delorme and Makeig, 2004, RRID:SCR_007292). For data analyses, the
EEG data were rereferenced offline to the average of both mastoids. For
each participant, raw data were low-pass filtered using a phase-shift free
Butterworth filter (12 dB/Oct slope) of 50 Hz and resampled at 250 Hz.
An automatic bad channel detection algorithm was then applied using
EEGLAB’s pop_rejchan method (threshold = 5, method = kurtosis;
Delorme and Makeig, 2004, RRID:SCR_007292). Independent compo-
nents analysis (ICA) was applied to correct for ocular artifacts. After ICA,
bad channels were interpolated (using the by-default spherical interpo-
lation method) and stimulus-locked epochs extracted [1000 ms (—200
800), baselined (—100 0)]. To exclude any remaining artifacts, epochs
with base-to-peak amplitude >100 mV were excluded from analyses
(~6%). Finally, the first 4 blocks of the experiment [i.e., the initial No
Dev block, and the following (first) sequence of the three critical block
types: Dev OMgh Dev 0%, and No Dev] were not included in the ERP
analysis to avoid any noise produced by lack of familiarity with the task
because we were interested in reward-related effects at asymptotic levels
of learning. Therefore, nine blocks of each type (No Dev, Dev Ohigh and
Dev O'%) were submitted for ERP analysis.

ERP analysis. Following MacLean and Giesbrecht (2015) and Hickey et
al. (2010), we expected to find an effect of stimulus value (i.e., difference
between activity elicited by $"8" and $'°*) in the occipital P1 component,
peaking at some point within the time window 75-200 ms from stimulus
onset. Because all stimuli were presented centrally, P1 activity was ana-
lyzed in the midline occipital electrode Oz (Smith et al., 2003). The P1
peak was defined as the largest positive peak between 75 and 200 ms after
the onset of the stimulus at Oz (averaging across all conditions; MacLean
and Giesbrecht, 2015). A time window of 70 ms around that peak was
then selected for analysis. Because the P1 maximum amplitude was at 165
ms from stimulus onset, the P1 magnitude for each condition was de-
fined as the mean EEG signal across the 130—200 ms time window.
Repeated-measures ANOVA was used to assess the effect of stimulus
value, outcome devaluation (i.e., differences between the No Dev, Dev
OMsh and Dev O blocks) and their interaction on P1 magnitude.

We did not have specific, a priori predictions regarding ERPs during
the remaining 600 ms in which the stimuli were presented (i.e., from 200
to 800 ms after stimulus onset). On the grounds that goal-directed brain
processes probably have a longer time course than the rapid visual pro-
cessing indexed by the P1 component (Wood and Riinger, 2016), it
seemed likely that later ERP components would be more likely to reflect
the operation of goal-directed processes and thus would show an effect of
outcome devaluation. However, because this is the first study to use ERPs
to investigate devaluation, we could not anticipate the spatiotemporal
distribution of any such effect. For this reason, we analyzed the ERP data
from 200 to 800 ms using mass univariate analyses, which are well suited
for exploratory analysis or for delineating effect boundaries in situations
with little (or no) guidance from previous studies (Groppe et al., 2011a,
2011b; Manly, 1997). Specifically, the effect of stimulus value (Shigh yg
§'") was analyzed for the 200 —800 ms time window (150 samples, 1 each
4 ms, as a consequence of the 250 Hz sample rate) and for all 10 midline
electrodes. Nonparametric (bootstrapped) ¢ tests (5000 permutations)
were used for these comparisons using the EEGLAB “statcond” function
(Delorme and Makeig, 2004, RRID:SCR_007292). The false discovery
rate (FDR) procedure (Benjamini and Yekutieli, 2001) was used as cor-
rection for multiple comparisons across the combination of channels
(10) and time points (150).
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An « level of 0.05 was used to determine significance. Where the
assumption of sphericity was violated in repeated-measures ANOVA,
Greenhouse—Geisser-corrected p-values are reported, along with the cor-
rected degrees of freedom. Relevant null results were assessed using
Bayesian analysis conducted using JASP version 0.7.5.5 software (www.
jasp-stats.org) and the default Cauchy prior 0.707.

Results

Behavioral results

Figure 1C shows behavioral data relating to participants’ re-
sponse choices during the reinforcement learning task. Trials in
which participants responded before the stimuli appeared or
failed to respond before the trial timed out (2% and 0.5% of all
trials, respectively) were discarded. Accuracy on the remaining
trials was calculated as the proportion of trials on which partici-
pants made a response that earned a diamond (outcome) regard-
less of the current value of that outcome (or equivalently, the
proportion of trials on which they did not make a response that
produced “Error!” feedback).

Response accuracy and response time were analyzed in sepa-
rate 2 (stimulus value: SM8", $°") X 3 (outcome devaluation: No
Dev, Dev O"&" Dev 0'%) repeated-measures ANOVAs. The
analysis of accuracy data showed a main effect of outcome deval-
uation, F, 45, = 6.83, p = 0.003, nf, = 0.23. Follow-up pairwise
tests revealed poorer accuracy on devaluation blocks compared
with no-devaluation blocks regardless of which S-R relation-
ship was devalued(No Dev vs Dev O™¢™ F, ,; = 12.33, p =
0.002, n[z, = 0.35; No Dev vs Dev olow: F 23 = 13.42, p = 0.001,
1712, = 0.37; Dev O"&% yvs Dev O'°": F < 1. There was also a stimulus
value X outcome devaluation interaction, F(, 4, 35 56) = 4.99, p =
0.022, m, = 0.18. This reflects the finding that accuracy was
poorer in SM&" trials compared with S'°* trials in Dev O"&"
blocks, whereas this difference was reversed in No Dev and Dev
0"¥ blocks (Fig. 1C). Follow-up analysis showed trends in the
simple effects of stimulus value compatible with this interpreta-
tion: for No Dev blocks, F; ,3) = 3.70, p = 0.067, 1, = 0.14; for
Dev O"Me" blocks, F1 3 = 3.72, p = 0.066, nf, = (.14; for Dev
0¥ blocks, F1 23 = 4.63, p = 0.042, nf, = 0.17. These results
suggest that, in No Dev blocks, participants were more focused
on earning OMeh than O'Y (thus the more accurate responses to
SPigh iy No Dev blocks). However, when one of the outcomes was
devalued, participants focused on earning the outcome that was
not devalued (thus the interaction). This influence of devaluation
on overt behavior implicates a goal-directed system. Figure 1C
also shows that, in devalued blocks, participants still made a “cor-
rect” response on the vast majority (>90%) of trials that pre-
sented the stimulus in which an outcome had been devalued; that
is, participants were more likely to produce the response that
yielded a devalued diamond than a response that produced
“Error!” feedback, suggesting that they were in part motivated to
avoid this negative feedback. This is a benefit of the use of nega-
tive feedback because any existing S—R links could otherwise have
weakened during the devalued blocks if the pattern of responses
had changed substantially (Balleine and O’Doherty, 2010).

Response time was defined as the time taken to make a re-
sponse after the onset of the response options (aliens) on each
trial, which occurred 800 ms after the onset of the stimulus
(cookie; Fig. 1A). The analysis of response times did not yield any
significant results (F = 1.12, p = 0.306). This may seem
inconsistent with previous research showing faster execution of
responses that produced high reward than low reward (MacLean
and Giesbrecht, 2015); however, those previous studies used
speeded response tasks, thus prioritizing rapid responses. In con-
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Figure2. P1results. A, Topographical figures mapping the differences between stimuli that were more frequently related to the high-value outcome (S"9") and to the low-value outcome (5°*)
for all conditions. Relative scale (minimum/maximum values): —1/+1 V. B, Magnitude of the P1 components for all conditions calculated as the mean activity at electrode Oz in the 130 —200 ms
time window. Error bars indicate within-participant SEM. ¢, Mean evoked activity locked to stimulus onset (100 ms baseline also shown) for the Shish and $'°V at electrode Oz. Data are the result of
averaging the three outcome devaluation conditions. Black lines represent the S™9" minus 5" difference waveform. Shaded areas represent the SEM of this difference.

trast, responses were unspeeded in the current task, which em-
phasized accuracy over speed. Therefore, it is unsurprising that
effects should manifest primarily in data on response choice
rather than speed. Indeed, previous research using an unspeeded
response task also found no effect of reward value on response
time (Luque et al., 2015).

Participants’ responses on consumption trials (Fig. 1B) were
sensitive to the outcome devaluation manipulation. Figure 1C
shows the proportion of consumption trials on which partici-
pants selected O™", This O™" was the more valuable option
during the No Dev and Dev O'" blocks [when it was worth 100
points vs 0¥, which was worth 1 point (No Dev) or zero points
(Dev O%)], but was the less valuable option in Dev OMeh blocks
(when OM®" was worth zero points and O'°" was worth 1 point).
ANOVA showed an effect of outcome devaluation in the distri-
bution of responses during the consumption trials (F(; 54539 431':
125.7,p <0.001, nf, = 0.85). As expected, the proportion of O igh
choices was considerably lower in the Dev O™&" blocks than
in either the No Dev or the Dev O'¥ blocks (No Dev vs Dev Q"
1414, p < 0.001, m; = 0.86; No Dev vs Dev O'":
Fuos = 223, p = 0149, m; = 0.09% Dev O™ vs
Dev 0'": F; 55, = 116.02, p < 0.001, m; = 0.83. Once again,
these findings suggest that participants’ choices on consumption
trials were sensitive to the current value of the outcome, demon-
strating goal-directed behavior.

F(1,23) =

ERP results

P1 time window

Figure 2A shows topographical maps of differences between EEG
elicited by Shish and S (P8P minus $'°V) in each of the three
outcome devaluation conditions separately and averaged over
the three conditions. The main difference in these maps relates to
an occipital positivity, corresponding to the visual P1 ERP com-
ponent. ERP waveforms at electrode Oz confirm that the differ-
ences are around the peak of the P1 component (Fig. 2C). Figure
2B shows mean P1 magnitudes (i.e., mean activity over the 130—
200 ms time window). A 2 (stimulus value: SM?, §°%) X 3 (out-
come devaluation: No Dev, Dev OM#" Dev O°%) ANOVA on
these data revealed a main effect of stimulus value (F(, ,3, = 5.70,
p = 0.026, m; = 0.20), with S"®" eliciting a larger P1 than S,
There was also a main effect of outcome devaluation (F, 4, =
3.64, p = 0.034, nf, = 0.14). Follow-up analysis indicated that,
overall, P1 was smaller in the No Dev condition than the two
devaluation conditions (No Dev vs Dev Q" F 53 = 5.00,
p = 0.035, ; = 0.18; No Dev vs Dev O'%, F(, 55, = 4.45, p =
0.046, nf, = 0.16; Dev O"" ys Dev O'°, F < 1). This result most
likely reflects greater overall attention during devaluation blocks,
which would be required because outcome values were not
shown on each trial in these blocks, making the task more de-
manding. Consistent with this view, participants’ response accu-
racy was poorer in devaluation blocks than in No Dev blocks
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Table 2. BF,, for possible models accounting for the P1 magnitude data
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Stimulus value + outcome devaluation Stimulus value X outcome devaluation

Model
Stimulus value Outcome devaluation
BF;o 125 0.56
Interpretation Strong support for the alternative Null and alternative equally

hypothesis supported

7.69 0.13
Substantial evidence for the alternative Substantial evidence for the null

hypothesis hypothesis

Interpretations of BF,, values follow the criteria in Wetzels et al. (2011).

No Dev

Significant results after FDR

Dev O*"

|
Significant results after FDR

Stimulus value effect from 200 to 800 ms
[S™" minus S

Dev O™

Significant results after FDR

Stimulus value x outcome devaluation interaction
2+

Figure 3.

Long-latency ERPs. Mass univariate analysis results. Colored lines represent S"" minus S°* difference waveforms for six midline electrodes (anterior to posterior: Fz, F(z, (z, CPz, POz,

and 0z). Colored bars below the plots represent time periods during which the SM9M minus SV difference s significantly different from zero (bootstrapped t test, p < 0.05, FDR corrected). Data are
shown for the No Dev condition, Dev 0"9" condition, and Dev 0" condition. The stimulus value X outcome devaluation interaction panel depicts the subtraction of the difference waveforms for

the Dev 0"9" and 0" conditions.

(Fig. 1C). The stimulus value X outcome devaluation interaction
was not significant (F < 1).

For present purposes, this analysis provides two key results:
(1) P1 magnitude was greater for S"#" than $'°*, demonstrating a
reward-related P1 effect, and (2) the size of this reward-related P1
effect was not influenced by the devaluation manipulation (indi-
cated by the nonsignificant interaction). To quantify the extent to
which our data favor the latter null hypotheses, we conducted a
2 X 3 Bayesian repeated-measures ANOVA on data relating to P1
magnitude. A BF,, >3 is usually considered to reflect substantial
support in favor of the alternative hypothesis and values >10
reflect strong support. Conversely, values <1/3 are considered
substantial evidence and values <1/10 strong support for the null
hypothesis (Wetzels et al., 2011). Results of the Bayesian analysis
are shown in Table 2. As can be seen, the strongest support for the
alternative hypothesis comes from the model with only a main
effect of stimulus value (BF,, = 12.5). In contrast, the model
based on a stimulus value X outcome devaluation interaction is a

poor fit to the data, with substantial support for the null hypoth-
esis (BF,, = 0.13).

Long-latency ERPs

Exploratory mass univariate analysis was conducted to assess
possible goal-directed brain activity at longer latencies. Figure 3
shows results from this analysis using nonparametric bootstrap-
ping tests to compare activity elicited by S"" and S'" stimuli
(stimulus value effects) across the long-latency time window
(200—800 ms) of their presentation (FDR corrected). In the Dev
OMeh condition, the stimulus value effect was significant for sev-
eral time points in the 570—630 ms range, with a more positive
EEG signal for the S"" stimulus than for the $'°* stimulus. This
difference was mirrored in the Dev O'" condition, in which
(toward the end of the long-latency time window) activity elicited
by the S"" stimulus was less positive than that elicited by the S
stimulus. This trend continued until the offset of the stimulus
(reaching significance for several time points from 640—700 and
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[S"™" minus S"']

No Dev

Dev O™

\

‘A ERP topography at 550-700 ms

Dev O

Dev O"™" Dev O™

gish

Show of habitual response (Anderson, 2016). It is

— S"" minus S

\ this interaction, generated by subtracting
difference waveforms for the Dev O""
condition from those for the Dev OMe"
condition (so that positive values in this
interaction waveform indicate that the
SPigh minus SV difference was larger in
the Dev OM8" condition and vice versa).
+ Significant differences between devalua-
tion conditions were observed at occipital
sites 330440 ms from stimulus onset and
0 these differences became more accentu-
ated with a more widespread distribution
(including central and parietal sites) from
550-700 ms, confirming previous analy-
ses. Figure 4 shows topographical maps of
Shie" minus SV differences during this
period (Fig. 4A), along with ERP wave-
forms elicited by S"®" and S'“ stimuli
during the whole stimulus duration (Fig.
4B). Consistent with the argument ad-
vanced above, these findings support the
idea that brain activity elicited by S"®" and
§'" in the 550~700 ms time window de-
pended critically and significantly on the
devaluation condition; that is, on the cur-
rent values of the outcomes signaled by
these stimuli. The implication is that this
interaction reflects the operation of goal-
directed brain processing.

Discussion
An influential idea concerning attention is
that perceptual prioritization can be a form

well established that early components of

y

Figure 4.

SEM of these differences.

770—800 ms) in a widely spread distribution including central
and parietal sites. Therefore, at late time points (570—800 ms),
the pattern of activity elicited by the same stimuli (S"'#" and §'°*)
depended critically on the current value of the outcome with
which they were associated. Phrased differently, in both Dev
0" and Dev 0" blocks, greater activity was elicited by the
stimulus that signaled the devalued outcome (S"#" in Dev OM¢"
blocks; $'* in Dev O'* blocks) than by the stimulus that signaled
the unchanged value outcome (S in Dev O™¢" blocks; S"'&" in
Dev O'" blocks). This sensitivity of brain activity to the current
value of predicted outcomes is consistent with goal-directed pro-
cessing of the stimulus. Importantly, there were no significant
stimulus value (SM8" vs §'°%) effects in the No Dev condition,
confirming that the outcome devaluation effects just described
were not present in the absence of devaluation (see Discussion for
further implications of this result).

To compare more directly reward effects on brain activity in
the different devaluation conditions, we submitted the stimulus
value X outcome devaluation interaction directly to a mass uni-
variate analysis. Figure 3 shows the spatiotemporal dynamics of

Long-latency ERPs. Results in the 550700 ms time window are shown. A, Topographical figures mapping the
differences between stimuli that were more frequently related to high-value outcome (S"9") and to low-value outcome (5'°") for
all conditions. Relative scale (minimum/maximum values): —1/+1 uV. B, Mean evoked activity locked to stimulus onset (100 ms
baseline also shown) for the S"S" and 5°" at relevant electrode CPz. Data for the two devalued conditions, Dev 09" and Dev 0,
are shown. Black lines represent the S"9" minus $"°* difference waveforms for each devaluation condition. Shaded areas represent

stimulus-locked ERPs (i.e., P1 component)
reflect stimulus salience computed by the
extrastriate visual cortex (Heinze et al.,
1994) and prior studies have shown in-
creased P1 for those stimuli reliably related
with high-value reward (Hickey et al., 2010;
MacLean and Giesbrecht, 2015). Here, we
provide the first evidence to support this as-
sumption by testing whether reward-related
P1 is resistant to transient outcome devaluations, a cardinal feature
of habitual responses. Therefore, the present experiment is the first
to test strictly the existence of an “attentional habit” as evident in the
P1 component.

Our results revealed that the P1 component elicited by a
reward-related stimulus was affected by the magnitude of its
more frequent outcome; that is, S"" elicited a P1 component
that was larger (more positive) than that elicited by S'*. This
result indicates that reward learning produced neural changes in
participants’ visual cortex, effectively increasing their perceptual
prioritization of SM€", Importantly, this reward-related percep-
tual prioritization effect was not affected by transient variations
in the value of the outcomes associated with these stimuli, as
expected for habitual responses.

Previous studies have reported that P1 is sensitive to reward
value even when the analyzed stimuli were no longer predictive of
reward (Hickey et al., 2010; MacLean and Giesbrecht, 2015).
Such studies tested responses during an extinction (no reinforce-
ment) phase. Notably, although responses to the critical stimuli
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were no longer rewarded in this extinction phase, the value of the
rewards that had been associated with those stimuli did not
change. Therefore, previous literature did not assess directly the
influence of outcome value over perceptual prioritization, which
requires changing outcome values in one stimulus while holding
the other constant. Outcome value manipulation is important
because, even when the outcomes are no longer available, the
goal-directed system would presumably maintain the neural rep-
resentation for outcome values (Ostlund and Balleine, 2007).
Therefore, in these previous studies, reward-related P1 effects
could still reflect the actual outcome value established and main-
tained by the goal-directed system without requiring the participa-
tion of the habit system. The same reasoning does not apply to the
current data; here, outcome values were modulated transiently via
devaluation instructions and overt behavior (responses on rein-
forcement learning trials and consumption trials) showed that par-
ticipants had updated their knowledge accordingly. The persistence
of reward-related P1 effects despite these transient changes in out-
come value therefore represents the strongest evidence to date of
habit-like neural activity in the human visual cortex.

Analysis of longer-latency stimulus-locked ERP activity showed
that neural activity was sensitive to the outcome devaluation manip-
ulation in two spatiotemporal regions, first at occipital sites from
330—440 ms and then in a wider distribution, with maximum effects
around centroparietal sites in a 550—700 ms time window. Impor-
tantly, the latter effect was produced because the EEG signal was
more positive for those stimuli that were specifically associated with
devalued outcomes. That is, significant stimulus value effects were
observed in both Dev O™¢" and Dev 0" conditions, but in different
directions. This effect reflects the pattern of brain activity expected
from a goal-directed system. Interestingly, this differential brain ac-
tivity did not merely reflect the value of the anticipated outcome
because no significant difference between S"®" and S was ob-
served in the No Dev condition despite the difference in outcome
values in these blocks.

Given its spatiotemporal features, the goal-directed effect ob-
served in the devaluation conditions is most likely due to changes
in the P3b, a component that has also been related to executive
functions such as working memory (Polich, 2007; but see Ver-
leger, 2008). Notably, the loop between prefrontal cortex and the
basal ganglia (caudate nucleus), which supports goal-directed
actions, has also been related to working memory functions
(Sharp etal., 2016). Therefore, a reasonable hypothesis is that this
goal-directed modulation of P3b reflects working memory activ-
ity, retrieving and processing changes in outcome value on each
trial (see also Otto et al., 2013). Specifically, in No Dev blocks, the
outcomes associated with both stimuli (S"€" and §'°*) took their
most frequent, “standard” values (+100 and +1, respectively).
Working memory demands in retrieving these standard values
would be similar, as reflected in the similar P3b to S"8" and $'* in
No Dev blocks. In contrast, in devaluation blocks, one of the
outcomes paired with one of the stimuli took on an unusual
(zero) value. Greater working memory resources would be re-
quired on these trials to retrieve this temporary updated value
and/or suppress the standard value of the outcome associated
with this stimulus, as reflected in the greater P3b elicited by the
stimulus paired with the devalued outcome in each type of deval-
uation block.

It is well established that behavioral control by the goal-directed
system dominates early in training, whereas the habit system domi-
nates with extended training (Balleine and O’Doherty, 2010). Given
that our participants did not undertake massive training (which usu-
ally entails training across several sessions and days; Tricomi et al.,
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2009), their actions were probably goal directed. Our results are
consistent with this interpretation: in particular, on consumption
trials, participants were much more likely to select the outcome that
had the higher current value and the responses on the reinforcement
learning trials suggest that participants were more focused on earn-
ing the outcome that currently had higher value (Fig. 1C). Therefore,
it seems that participants’ attentional habit system was active during
the experiment (i.e., it was somehow modulating activity in partici-
pants’ visual cortex) even when their behavior was goal directed. Our
results are thus consistent with dual-process theories of learning,
which assume that both goal-directed and habit systems operate in
parallel. We found distinct habitual and goal-directed ERP compo-
nents over each trial in the early and late stages, respectively. This
pattern of evidence supports models assuming that the final behav-
ioral output is a product of both systems or arbitration occurs at a
late stage of response selection (Balleine and O’Doherty, 2010; Lee et
al., 2014).

The results of the present study also help to establish the temporal
order in which habit and goal-directed systems operate. Habit learn-
ing and behavior are sustained by the so-called sensorimotor loop,
which connects the sensorimotor and motor cortex with the medial
and posterior putamen (Yin and Knowlton, 2006). In an fMRI study
with humans, Tricomi et al. (2009) found increased BOLD activity
in the posterior putamen over the course of individual practice ses-
sions and across days of practice. Therefore, in our task, the putamen
might be activated by the presentation of the stimulus, producing
progressive strengthening of SR links. It is difficult to detect puta-
men activity using EEG because it is a subcortical region (Luck,
2014), so we cannot determine whether the habit system itself was
activated first, at the same time, or after the goal-directed system.
However, we can establish that a habit-like signal did influence the
first stages of stimulus processing as early as 130 ms after stimulus
presentation. In addition, our EEG data revealed no goal-directed
activity until 330 ms after stimulus presentation. Therefore, our data
suggest that faster habit-like processing took place before goal-
directed processing. This order of information processing maps well
onto associative theories claiming that SR activation is faster than
goal-directed processing (e.g., the associative-cybernetic model;
Dickinson and Balleine, 1994). Interestingly, similar predictions are
made by dual-process theories of decision making and reasoning
(Evans, 2008). In these theories, fast automatic mechanisms operate
first by default and without requiring significant cognitive resources.
If, however, a conflict-monitoring system detects the need for addi-
tional cognitive control, a slower and more cognitively demanding
mechanism would take control of behavior (Kahneman, 2011).

The current study raises important questions that could be
addressed in future experiments. For instance, it is well known
that Pavlovian conditioned responses, which are learned from
direct pairings between a conditioned stimulus (e.g., a tone) and
an unconditioned stimulus (e.g., food), play an important role in
reinforcement learning (de Wit and Dickinson, 2009). Future
research might investigate to what extent the habit-like P1 effect
observed here is the result of learning different Pavlovian values
for the SM&" and $'°Y. In addition, future studies could extend the
generality of the current findings by using an R—O contingency
degradation strategy (Dickinson et al., 1998) to further assess the
habitual nature of the reward-related P1. This test of habits ma-
nipulates the effectiveness of the response in producing outcomes
(rather than manipulating the value of the outcomes as in the
current study).

In summary, the present results provide for the first time ev-
idence of rapid, habit-like activity in visual cortex (P1 compo-
nent), which is followed by a slower, goal-directed brain activity
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as shown in the P3b component. These results highlight the im-
portance of attentional/perceptual processing for habit learning
and vice versa; are compatible with the idea that habit and goal-
directed systems are activated in parallel even during early stages
of training; and suggest that, during reinforcement learning,
stimulus processing is prioritized by habit-like attentional pro-
cesses and subsequently by goal-directed processes that adapt the
stimulus value through working memory.
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