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The recent history of events can influence responding despite there being no contingent relationship between
those events. These ‘sequential effects’ are ubiquitous in cognitive psychology, yet their study has been dominat-
ed by two-choice reaction time tasks in which sequences necessarily comprise simple response repetitions and
alternations. The current study explored sequential effects in a three-choice reaction time task where the target
was constrained to either move clockwise or anticlockwise on each trial, allowing for assessment of sequential
effects involving the direction of target transitions rather than target location. Across two experiments, a reliable
pattern of sequential effects was found in the absence of contingencies, whereby the most notable feature was
that participants were fastest to respond to subsequences where the target moved in a consistent direction on
consecutive trials, compared to when the target direction alternated. In Experiment 2, the direction of motion
was biased tomove in one direction 75% of the time and in a subsequent transfer phase, participants showed ev-
idence of learning this probabilistic sequence but still exhibited the same pattern of sequential effects on trials
where the target moved in the more prevalent or less prevalent direction. Simulations with a connectionist
model of sequence learning (the Augmented Serial Recurrent Network, Cleeremans & McClelland, 1991) pro-
duced an adequate replication of the sequential effects in both experiments in addition to an effect of sequence
learning in Experiment 2. We propose that sequential effects may represent learning about transient contingen-
cies and may be described using the same associative learning mechanisms intended for sequence learning.
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The recent history of events produces noticeable effects on both con-
trolled decision-making (e.g. the gambler's fallacy, Burns & Corpus,
2004; Jarvik, 1951; categorization judgements, Jones, Love, & Maddox,
2006; Jones & Sieck, 2003), as well as more automatic responses (e.g.
conditioned responding, Perruchet, 1985; pain sensation, Link, Kos,
Wager, & Mozer, 2011). These transient differences in performance as
a function of trial history are known as sequential effects, and have
been studied most extensively in choice reaction time (RT) procedures,
such as the serial reaction time (SRT) task (Nissen & Bullemer, 1987). In
this task, participants usually observe a target appearing in one of sever-
al locations on the screen, and have to respond with a corresponding
keypress. When the task is entirely unstructured, such that there is no
consistent sequence to the target's movement between positions, par-
ticipants are nevertheless faster to respond on certain trials. These “se-
quential effects” suggest that in the absence of any predictive
information, responding is still influenced by recent prior events.

In SRT tasks, sequential effects are normally differentiated from se-
quence learning. To examine the latter, contingencies are embedded be-
tween target locations, such that reductions in RTs for predictable
(sequenced) trials reliably occur over the course of the experiment.
The aim of many studies on sequence learning is to demonstrate that
participants are able to learn about repeated regularities in the se-
quence, and to determine whether this learning is accompanied by
awareness or attributable to an implicit learning mechanism (e.g.
Cleeremans & Jiménez, 1998; Jiménez, Méndez, & Cleeremans, 1996;
Reber, 1989; Willingham, Nissen, & Bullemer, 1989). In such experi-
ments, sequential effects are often regarded as variance to be controlled
for or minimized on test (Jones, Curran, Mozer, & Wilder, 2013). The
methods that researchers have employed to this end include devising
an appropriate sequence to minimize sequential effects (e.g. avoiding
first-order repetitions, Cleeremans &McClelland, 1991), or using a con-
trol group who are trained with a pseudorandom sequence containing
no contingencies but with a trial order that would produce equivalent
sequential effects (e.g. Anastasopoulou & Harvey, 1999; Jones &
McLaren, 2009). The need to partial out sequential effects is a valid con-
cernwhen attempting tomeasure sequence learning, since if sequential
effects are merely performance effects, they may obscure or inflate evi-
dence of learning (Vaquero, Jiménez, & Lupiáñez, 2006). Despite this,
and the general treatment of sequential effects and sequence learning
as separate phenomena in the literature, several researchers have sug-
gested that sequential effects and sequence learning effects may result
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from the same learning mechanism (Audley, 1973; Laming, 1969;
Soetens, Melis, & Notebaert, 2004).

Early studies on sequential effects were mostly confined to two-
choice SRT tasks for the purpose of constraining the possible number
of events (e.g. left and right) and transitions (repetitions and alterna-
tions of target location). For example, in a two-choice RT task (e.g. left
and right responses) where the appearance of the target is randomly
determined, participants are usually fastest to respond on trials where
either repetitions or alternations of target location have occurred con-
secutively (e.g. Bertelson, 1961; Cho et al., 2002). This means that if a
target had just appeared on the left 3 times, participants are usually
faster to respond left than they are to respond right (i.e. LLLL would be
faster than LLLR). Conversely, if participants have just experienced a se-
ries of alternations (left, right, left), they are faster at responding right
than left (i.e. LRLR is faster than LRLL), but this facilitation is usually ob-
served to be weaker than the equivalent effect for repetitions (e.g.
Bertelson, 1961; Cho et al., 2002; Remington, 1969). These patterns of
sequential effects have been attributed to participants' subjective ex-
pectancies (Soetens, Boer, & Hueting, 1985), which in this context
refer to the predictions generated by some internal learning process.
However, it is worth noting that these expectancies have been shown
to be independent of the individual's explicit beliefs about impending
events: recent work that has directly compared trends in choice RT
and trends in explicit expectancy for the relevant events has found
them to be widely divergent (Barrett & Livesey, 2010; Livesey & Costa,
2014; Lee Cheong Lem, Harris, & Livesey, 2015, see also Hale, 1967,
and Hyman, 1953, for earlier informal observations of similar trends).

The internal learning process that leads to these subjective expec-
tanciesmay be similar to themechanisms that underlie sequence learn-
ing. Arguments in favor of a common mechanism include the fact that
both sequence learning (e.g. Frensch & Miner, 1994) and sequential ef-
fects (e.g. Soetens, Boer, & Hueting, 1985) are highly sensitive to the
length of the response-stimulus interval (RSI), practice affects sequence
learning and sequential effects alike (Soetens et al., 2004), and the pat-
tern of sequential effects is mirrored in electroencephalogram (EEG)
studies investigating the P300 component, which is thought to code
for prediction error (Squires, Wickens, Squires, & Donchin, 1976).
These observations suggest that participants do form and update expec-
tancies while responding to unstructured material, and thus the ques-
tion of interest is what kind of mechanism leads to these expectancies.
One possible answer is that sequential effects are a natural consequence
of a rapid learning mechanism that is sensitive to short-term transient
contingencies as well as long-term stable contingencies. In this way, se-
quential effects may represent a by-product of a highly adaptive ability
to learn and change according to the statistics of a dynamic environ-
ment (Jones et al., 2013; Yu & Cohen, 2009).

Sequential effects models, however, have been largely developed
separately of sequence learning models. Some models of sequential ef-
fects use simple associative architectures to represent the two-choice
RT procedure, in combination with error-correction mechanisms. De-
spite variations between current models, there is some agreement
that sequential effects in two-choice RT tasks can be explained by as-
suming that participants learn about the base rate of target locations
(repetitions of specific target locations), and the frequencies of first-
order transitions (repetitions and alternations of target location)
(Jones et al., 2013; Wilder, Jones, & Mozer, 2009). Other successful at-
tempts to model sequential effects have used detectors that track first-
order contingencies to bias the system towards repetitions or alterna-
tions depending on trial history (Cho et al., 2002), or have omitted all
hidden units and set up direct associations between representations of
stimuli and responses (Gureckis & Love, 2010). Thesemodels of sequen-
tial effects provide good fits to empirical data and provide some indica-
tion of the statistics to which participants are sensitive. In contrast,
models that have most successfully been applied to sequence learning
incorporate similar learning principles with relatively complex model
architecture, such as the augmented Serial Recurrent Network (SRN;
Cleeremans & McClelland, 1991; Elman, 1990). If sequential effects are
served by the same mechanisms as sequence learning, models like the
augmented SRN, which is held to be the benchmark model of sequence
learning (Beesley, Jones, & Shanks, 2012; Yeates, Jones, Wills, McLaren,
&McLaren, 2013), should account for sequential effects to the same de-
gree of success as they do for sequence learning involving complex de-
terministic and probabilistic transitions. The augmented SRN was
purposefully modified from the original SRN (Elman, 1990) to account
for short-term sequential effects (Cleeremans & McClelland, 1991), yet
there has been relatively little reportedwork using the SRN tomodel se-
quential effects. Thus one of the aims of the current study was to test
whether the augmented SRN could model sequential effects in addition
to sequence learning effects in a novel three-choice RT task.

While there has been some research on sequential effects in choice-
RT paradigmswithmore than two responses (Falmagne, 1965; Hyman,
1953; Schvaneveldt& Chase, 1969), these studies havemostly discussed
the effects of repeating a single response location and have not fully ex-
amined other possible combinations of subsequences. One study that
has investigated sequential effects in a three-choice SRT task used
three different targets (geometric shapes), which could appear in the
center of the screen, and participants responded by pressing the appro-
priate button using one finger on their dominant hand (Experiment 3,
Gökaydin, Ma-Wyatt, Navarro, & Perfors, 2011). By comparing the se-
quential effects to an analogous procedure with only two possible tar-
gets (Experiment 2, Gökaydin et al., 2011), they concluded that adding
an additional target caused participants to display sequential effects
consistent with switching from tracking first-order statistics (repeti-
tions and alternations of target location) to tracking base rate statistics
(the relative frequency of each target). Their explanationwas that intro-
ducing three possible responses increased task complexity, which in
turn increased the number of possible first-order sequences that could
be learned. Under these conditions they argued that participants
reverted to learning about the base rates of each target, which was the
simplest statistic to learn. This explanation implies a strategic and pos-
sibly intentional shift in the participant's learning strategy. It remains
to be seen whether a sequence learning model like the SRN could ac-
count for changes in the number of target locations simply as a conse-
quence of the changes in contingencies rather than a shift in attention
to other event statistics.

In any case, Gökaydin et al.’s (2011) finding accords with the results
of two-choice SRT tasks, where it is clear that first-order repetitions of
target location (e.g. left-left-left) produce the most marked decreases
in RT (e.g. Cho et al., 2002), and participants exclusively report noticing
runs of target location when asked to explicitly look for a sequence be-
fore training (Experiment 3, Jones & McLaren, 2009). While there are
important procedural differences in Gökaydin et al.’s (2011) task that
reduce the generalizability to the majority of the two-choice RT litera-
ture (such as responding to the identity of the target rather than the lo-
cation and only using onefinger to respond), theirfindings highlight the
importance of investigating sequential effects in different paradigms
with more than two target locations in order to provide a more general
account of sequential effects.

In the current study, we arranged three target locations on the edges
of a computer screen (e.g. left-top-right) and prohibited repetitions of
target location (e.g. top-top), to allow us to assess sequential effects
concerning the repetition and alternation of the direction of target tran-
sitions, rather than target location (see Fig. 1). By prohibiting repetitions
of target location, this task is similar to two-choice RT tasks in that on
any given trial, there are only two possible events that can follow (a
clockwise or anticlockwise transition). These spatial transitions add a
novel and abstract quality to the SRT task, since direction of target
movement (e.g. clockwise rotation) can summarize 3 different sets of
contingencies (left-top, top-right, right-left). Using this paradigm, we
assessed sequential effects by allowing an equal probability of clockwise
or anticlockwise transitions (i.e. where the direction of motion on each
trial is randomly determined, Experiment 1), and also assessed



Fig. 1. Schematic diagram of the three-choice SRT task. The target could appear in either
the left, top, or right position on screen (dotted circles, not seen in actual experiment)
and participants had to respond by pressing the corresponding arrow key. The target
could never appear in the same location twice in a row, which meant that the target
would transition in a clockwise or anticlockwise direction on each trial (i.e. if the target
appeared at the top, the next target location would either be left or right). In
Experiment 1, the target direction was randomly determined so that there was a 50%
chance of transitioning clockwise or anticlockwise on each trial. In Experiment 2, there
was a cued direction of motion whereby the target would travel in a predominant
direction 75% of the time (in this example, clockwise, as represented by the bold, curved
lines), and in the miscued direction 25% of the time (anticlockwise, as represented by
the straight, dotted lines).

Fig. 2. Example of how a fourth-order subsequence was coded as a series of target
locations (XYXYZ), a series of movements with reference to the direction of the first-
order transition (SDS), and directional repetitions and alternations (AAR). X, Y, and Z
can stand for any of the three target locations (left, top, right), with subsequences
reading from left (past trials) to right (current trial, n), and therefore direction 1 and
direction 2 can represent either clockwise or anticlockwise. Subsequences were entered
into the ANOVA based on whether transitions at the nth level were in the same
direction (S) or different direction (D) to the first-order transition (YZ, direction 1 in
this example). Subsequences can also be conceived of as a series of repetitions (R) and
alternations (A) of target direction, which are referenced from the direction of
movement on the previous trial.
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probabilistic sequence learning by biasing the direction ofmotion in one
direction (i.e. such that there is a ‘cued’ and ‘miscued’ direction of mo-
tion, Experiment 2).

The primary aim of the current study was to explore sequential ef-
fects in a three-choice SRT task and in particular, test whether the se-
quential effects regarding repetitions and alternations of target
location also apply to other event statistics such as the direction of target
transitions.While repetition effects clearly indicate learning of target lo-
cation, alternation effects conflate the alternation of target locationwith
the presence of targetmotion in terms of the transition from one target
to the next. The suggestion is therefore that alternation effects may rep-
resent learning about target transitions, which is a higher-order statistic
involving the transitional relation between one target and the next, and
one towhich both sequential effects and sequence learningmaywell be
sensitive. We also testedwhether these sequential effects and sequence
learning in Experiment 2 can be modeled by the augmented SRN
(Cleeremans & McClelland, 1991), since it is a popular model of se-
quence learning that should, in principle, be able to account for sequen-
tial effects. One of the advantages of the SRN is that it makes no
assumptions about the statistics (e.g. base rates and repetition rates)
that need to be learned and thus the statistics that the units code for
are not ‘hard-wired’ into the model, removing the need to artificially
change the event statistics that the model tracks when changing the
number of target locations.

1. Experiment 1

The aim of Experiment 1 was to explore the sequential effects pres-
ent in a three-choice SRT task that contained no response repetitions,
such that all sequential effects would be based on sequences of transi-
tions between target locations. Most studies examining sequential ef-
fects have used two-choice RT tasks, which means that our task is
relatively novel despite the extensive literature on sequential effects
(but see Gökaydin et al., 2011). Since neither direction of motion
prevailed consistently, for any given target location, the other two target
positions were equally likely to follow and therefore the target always
moved in either a clockwise or anticlockwise direction. However, taking
any three consecutive responses, the direction of motion itself would
repeat if the three different target locations were shown consecutively
in any order (in abstract terms, responses X, Y, then Z), whereas the di-
rection ofmotionwould reverse or alternate if the last responsewas the
same as that occurring two presentations prior (that is, Z, Y, then Z
again). A difference between these trial types can be thought of as sec-
ond-order sequential effects (i.e. XYZ vs. ZYZ). A similar logic was ap-
plied to examine third-order sequential effects, that is, RT on the last
of four consecutive responses that constitute three directional transi-
tions, and fourth-order sequential effects, that is, RT on the last of five
consecutive responses that constitute four directional transitions (see
Fig. 2 and Table 1). A RSI of 500 ms was chosen because this delay be-
tween responses should be long enough to avoid response priming ef-
fects that dramatically alter sequential effects with short RSIs
(b200 ms) (e.g. Vervaeck & Boer, 1980) but short enough for partici-
pants to retain a sense of directional transition from one target location
to another.

1.1. Method

1.1.1. Participants and apparatus
Fifteen participants (11 female, M age = 26.87, SD = 7.90) who

were either first year Psychology students at the University of Sydney
or respondents to an online advertisement took part in the experiment.
Students received course credit and respondents received payment
(AUD$15/h) for their participation. All experiments were programmed
using Psychophysics Toolbox for Matlab (Brainard, 1997; Pelli, 1997)
and run on Apple Mac Mini desktop computers connected to 17 in.
CRT monitors, refreshed at a rate of 85 Hz. A standard Apple keyboard
andmouse were used, and testing was conducted in individual cubicles
in groups of up to six. Participants gave informed consent and the study
was approved by the University of Sydney Human Research Ethics
Committee.

1.1.2. Procedure
Participants were told that the purpose of the taskwas to respond as

quickly and as accurately as possible to a target (a magenta circle) that



Table 1
Subsequences at fourth-, third-, and second-order level coded in three different ways.

Fourth order Third order Second order

SSS YZXYZ (RRR) SS ZXYZ (RR) S XYZ (R)
DSS XZXYZ (ARR)
DDS ZYXYZ (RAR) DS YXYZ (AR)
SDS XYXYZ (AAR)
DDD YXZYZ (RRA) DD XZYZ (RA) D ZYZ (A)
SDD ZXZYZ (ARA)
SSD XYZYZ (RAA) SD YZYZ (AA)
DSD ZYZYZ (AAA)

Note. The subsequences read from left (past trials) to right (current trial). X, Y and Z rep-
resent any one of the 3 target locations left, top, and right. R andA representwhether each
subsequence consists of a repetition or alternation of direction, referenced from the previ-
ous trial. S and D represent whether the nth-order transition is the same (S) or different
(D) direction to the 1st-order transition (YZ).

Fig. 3. RTs (a) and proportion of errors (b) for each fourth-order subsequence in
Experiment 1. Subsequences are divided according to whether transitions at the second-
order (XYZ vs. ZYZ, shown as separate lines), were the same or different direction to the
first-order transition (YZ). Within each pair of connected data points, the left point has
the same 3rd-order transition and the right has a different 3rd-order transition to the
direction of the first-order transition (YZ). The pairs of connected data points on the left
side of the figure have the same 4th-order transition, and the pairs on the right side of
the figure have a different 4th-order transition to the first-order transition (YZ).
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would appear in one of three positions on the screen. Participants were
instructed to press the ‘left’ arrow key if the target appeared on the left,
the ‘up’ arrow key if the target appeared at the top, and the ‘right’ arrow
key if the target appeared on the right of the screen. Participants were
not given any explicit instruction regarding the movement of the target
(i.e., that it could not appear in the same location twice in a row) and
were not encouraged to attend to the movement of the target. Partici-
pants were asked to use their non-dominant hand to respond during
training. If participants used their left hand, they placed their ring finger
on the left arrow key, their middle finger on the up arrow key, and their
index finger on the right arrow key. The target stayed on screen until a
response (correct or incorrect) was made and after a blank RSI of
500ms, the next target appeared. After a short practice phase (48 trials),
participants completed 720 trialswhere the location of the target had an
equal chance of moving clockwise or anticlockwise and thus its location
could not be predicted. Trials were randomized in blocks of 12, main-
taining the50/50 ratio of clockwise and anticlockwise transitionswithin
each block. The experiment was completed in one continuous block
without a break and lasted for approximately 15 min.
1.2. Results and discussion

All subsequent RT analyses refer to mean RTs for correct responses
excluding any greater than one second1 and Greenhouse-Geisser cor-
rections were performed for violations of sphericity. Participants took
on average 337ms (SD=40.9) to respondwith 96% (SD=2.1) accura-
cy. Henceforth X, Y, and Z will be used to describe the various subse-
quences with X, Y and Z representing any one of the 3 positions (left,
top, right; see Fig. 1). This coding of subsequences is designed to capture
the sequence of motion, but not the direction of movement. Thus, an
XYZ subsequence could equally stand for either a left-top-right or left-
right-top sequence. Reaction times and error data always represent per-
formance on the final trial of each subsequence (Z). Trials were divided
into subsequence type at the second-, third-, and fourth-order level (see
Table 1). Within each level (n), trials were classified according to
whether the transition at the nth level was the same (S) or different
(D) from the direction of motion of the first-order transition (Y to Z,
see Fig. 2 for an example of how a fourth-order subsequence was
coded in this way), as well as whether the subsequence contained a se-
ries of alternations (A) or repetitions (R) of target direction. This yielded
2 different subsequences at the second-order level (R, A), 4 subse-
quences at the third-order level (RR, RA, AR, AA), and 8 subsequences
at the fourth-order level (RRR, RRA, RAR, RAA, ARR, ARA, AAR, AAA).

Fig. 3 displays mean RTs and errors for the eight fourth-order subse-
quences, split according to whether the fourth-order transition was the
same (left side of the figures) or different (right side of the figures) to
the first-order transition. It is firstly apparent that the overall pattern
1 This resulted in discarding of 4.3% of trials due to errors or RTs N 1 s.
of sequential effects is very similar for the RTs (top panels) and errors
(bottom panels), and that there are very large differences between the
two second-order subsequences (XYZ and ZYZ shown as separate
lines), with performance on subsequences with a final repetition of mo-
tion (XYZ) faster than subsequences with a final alternation of motion
(ZYZ). Within XYZ and ZYZ subsequences, the recent history of alterna-
tions and repetitions seemed to further impact performance.

To examine the pattern of sequential effects, a (2 × 2 × 2) ANOVA
with fourth-order, third-order, and second-order aswithin-subjects fac-
tors was performed onmean RTs and errors for the fourth-order subse-
quences (Fig. 3). Note that the subsequences were entered into the
ANOVA coded according to whether the nth transition was in the
same or different direction to the first-order transition (see Table 1).
For the RT data, there was a main effect of fourth-order, F(1,14) =
6.40, p = 0.024, ηp2 = 0.314, and third-order, F(1,14) = 5.31, p =
0.037, ηp2 = 0.275, and a very large main effect of second-order,
F(1,14) = 103.3, p b 0.001, ηp2 = 0.881. In the error data, there was
also a main effect for second-order, F(1,14) = 17.11, p = 0.001, ηp2 =
0.550, but no significant main effect of third- nor fourth-order, highest
F(1,14) = 2.68, p = 0.124, ηp2 = 161. It is clear that the strongest main
effect in both RT and errors was at the second-order level, specifically
comparing the XYZ subsequence (RT: M = 317 ms, SD = 39.5, errors:
M = 0.023, SD = 0.013) to the ZYZ subsequences (RT: M = 363 ms,
SD=44.1, errors:M=0.061, SD=0.035).2 Participants were on aver-
age 46 ms faster and also made on average 3.8% fewer errors when the
target travelled in a consistent direction on 2 consecutive transitions
(those ending in XYZ), compared to when the target appeared to
2 The second-order sequential effects were previously reported in the Proceedings of
the Cognitive Science Society (Lee & Livesey, 2013).
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alternate directions (those ending in ZYZ). Themain effects of third- and
fourth-order in the RT data show that participants were 10 ms faster to
respond when the third-order transition was the same direction as the
first (subsequences of the form _S_ were faster than _D_, i.e. in Fig. 3,
of the points connected by lines the left points are lower than the
right points), but 4 ms slower to respondwhen the fourth-order transi-
tion was the same direction as the first (subsequences of the form S_ _
were slower than D_ _, i.e. in Fig. 3, the left hand side of the figures is
higher than the right hand side). Note however, that these main effects
are qualified by the significant interactions discussed below.

In RTs, there was a significant third-order x second-order interac-
tion, F(1,14) = 7.12, p = 0.018, ηp2 = 0.337, and significant fourth-
order x second-order interaction, F(1,14) = 5.31, p = 0.037, ηp2 =
0.275. A significant 3-way interaction between fourth-, third-, and sec-
ond-order factors was found in both RTs, F(1,14) = 31.34, p b 0.001,
ηp2 = 0.691, and accuracy, F(1,14) = 16.13, p = 0.001, ηp2 = 0.535 (see
Fig. 3). The easiest way to interpret the three-way interaction is by con-
ceptualizing the subsequences as a series of directional repetitions and
alternations (see Table 1). If we examine the 4 fourth-order subse-
quences where the fourth-order transition was consistent with the
first-order transition (left side of the figures), it is clear that RT and ac-
curacy were influenced primarily by second-order differences. That is,
whether the last trial in the subsequence contained a repetition (R) or
alternation (A). However, within the XYZ subsequences, responding
was facilitated when the subsequence contained several repetitions in
a row (RRRwas easier to respond to thanAAR), andwithin the ZYZ sub-
sequences, respondingwas facilitatedwhen the subsequence contained
a repetition before the last alternation (ARA), compared to when there
were 2 alternations to respond after (RAA). This pattern seems to re-
verse for the examination of those subsequences where the fourth-
order transition is inconsistent with the first-order transition (right
side of the figures). For the XYZ subsequences, there seemed to be little
difference betweenwhether the third-order transition contained a rep-
etition (ARR) or alternation (RAR), as responding seemed to be general-
ly facilitated by the repetition of a direction of motion on the last trial of
the subsequence. On the other hand, for the ZYZ subsequences,
responding was both faster and more accurate when the subsequence
contained a series of alternations in a row (AAA) thanwhen it contained
a series of repetitions and then a final alternation (RRA). The pattern of
data in Experiment 1 can be summarized in the following way: general
facilitation in responding occurred when the target moved in the same
direction a few times in a row (i.e. therewas a repetition of a direction of
motion), and responding was hindered when the direction alternated,
except when the direction alternated several times (i.e. ZYZYZ).

It is clear from this experiment that higher-order sequential effects
exist in this task, and while some interactions between second-, third-
and fourth-order levels of subsequences were significant in this experi-
ment, by far the most substantial difference was at the second-order
level between the XYZ and ZYZ subsequences. The biggest determinant
forwhether responding in this taskwas facilitatedwaswhether thepre-
vious direction of motion was consistent with the current direction of
motion. It appears that sequences of trials in which the target changed
direction led to slower responses (the fastest ZYZ subsequence, ZYZYZ,
was still numerically slower than the slowest XYZ subsequence,
XYXYZ, see Fig. 3).

2. Experiment 2

In Experiment 2, contingencies were added to the task such that the
target would appear to be moving in one direction 75% of the time dur-
ing training, and a transfer phase was also added where these contin-
gencies were removed. This transfer phase allows us to test whether
participants had learnt about the contingencies, with learning evident
if participants are faster to respond on trials where the target moved
in the previously cued direction of motion (cued trials) than the previ-
ously miscued direction (miscued trials). To equate the analysis
between Experiment 1 and Experiment 2, we focused on analyzing
the sequential and cueing effects during the transfer phase only, such
that any sequential effects shown would be under conditions where
there was no predictive information.
2.1. Method

2.1.1. Participants
All fifteen participants (9 female, M age = 25.47, SD= 7.22) in Ex-

periment 2 were respondents to an online advertisement and were
paid AUD $15/h for their participation.
2.1.2. Procedure
The procedure was identical to Experiment 1 except for the follow-

ing changes. After completing a short practice phase (48 trials) with
no contingencies, participants responded to 720 trials where the target
moved in a prevailing direction of motion on 75% of trials (which was
randomly chosen to be clockwise or anticlockwise for each participant)
and 360 trialswhere therewere no contingencies (therewas noprevail-
ing direction of motion). For the initial 720 trials with prevailing direc-
tion ofmotion, trials were randomized in blocks of 12 trials maintaining
the 75% cued and 25%miscued ratio of contingencies within each block.
Participants continued to use the same response keys and hand to re-
spond and there was no break between the training and transfer
phase, such that there was nothing to mark the transition into a sepa-
rate phase for participants. The instructions given to participants were
exactly the same as Experiment 1, meaning that participants were not
informed that there was a bias in the direction of motion.
2.2. Results and discussion

The data were analyzed in a similar way to Experiment 1, with cue-
ing added as a within-subjects factor.3 A (2 × 2 × 2 × 2) within-subjects
ANOVAwith cueing, fourth-, third-, and second-order as factorswas run
on RTs (Fig. 4a) and errors (Fig. 4b) in the transfer phase. We purpose-
fully restricted our analyses to the transfer phase to equate the assess-
ment of sequential effects, as much as possible, to that conducted on
the data from Experiment 1, where there was an absence of contingen-
cies (see Supplementary Materials for the results of the analyses on the
training phase). In RTs, there was a significant main effect of cueing,
F(1,14) = 45.96, p b 0.001, ηp2 = 0.767, with faster responses for cued
trials indicating that participants expected transitions to occur in the
cued direction during the transfer phase. There was also a main effect
of second-order, F(1,14)=42.02, p b 0.001, ηp2=0.750, and a significant
interaction between fourth-, third-, and second-order, F(1,14)= 49.31,
p b 0.001, ηp2=0.779. In errors, there was amain effect of second-order,
F(1,14)= 9.25, p=0.009, ηp2=0.398, a significant interaction between
fourth- and third-order, F(1,14) = 12.81, p = 0.003, ηp2 = 0.478, and
also a significant 3-way interaction between fourth-, third-, and sec-
ond-order, F(1,14) = 13.43, p = 0.003, ηp2 = 0.490. This broadly repli-
cates the sequential effects found in Experiment 1, where participants
showed a very large difference in responding between XYZ and ZYZ
subsequences, and produced both repetition and alternation effects
that explain the 3-way interaction. Interestingly, while participants
showed very strong cueing effects overall, the 4-way interaction was
not significant in either RTs nor errors, F b 1, and nor were any other in-
teractions significant, Fs(1,14) ≤ 2.06, ps ≥ 0.174, ηp2 ≤ 0.128, suggesting
that the pattern of sequential effects shown on cued and miscued trials
was very similar (see Fig. 4).



Fig. 4. RTs (a) and proportion of errors (b) for cued and miscued trials for each fourth-
order subsequence in the transfer phase of Experiment 2. Subsequences are divided
according to whether transitions at the second-order (XYZ vs. ZYZ, shown as separate
lines), third-order (left vs. right points connected by lines), and fourth-order (left vs.
right side of the figures) level were the same or different direction to the first-order
transition (YZ). Cued and miscued trials are shown as separate lines.

Fig. 5.Model architecture for the augmented SRNwith three target locations andNhidden
units. The three input and output units (X, Y, Z) correspond to the three target locations
(left, top, and right of screen). The network is recurrent in that the activations in the
hidden layer at time t are copied back to a set of context units which feed into the next
trial at time t + 1.
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3. General discussion

Using a novel three-choice RT task where the target locations were
arranged on the left, top and right of a computer screen, we found a ro-
bust pattern of sequential effects in the absence of a cued direction of
motion in Experiment 1, and for cued and miscued trials in a transfer
phase following trainingwith a biaseddirection ofmotion. Since the tar-
get never appeared in the same location on successive trials, the target
location was constrained to always move in one of two directions:
clockwise or anticlockwise. When the contingencies were biased in
one direction 75% of the time, participants appeared to learn this prob-
abilistic sequence by showing a cueing effect once the contingencies
were removed in the transfer phase of Experiment 2. While RTs in the
transfer phase were generally faster for cued than for miscued trials,
the pattern of sequential effects did not appear to be different between
cued andmiscued trials, suggesting an additive effect of short- and long-
term contingencies on RTs. Participants responded fastest to subse-
quences containing repetitions of target direction (YZXYZ trials), similar
to consistent repetition advantages observed in the two-choice RT liter-
ature (e.g. Bertelson, 1961; Hyman, 1953). Interestingly, for the ZYZ
subsequences, we found that the subsequence that was responded to
most rapidly was the one where the target direction alternated consis-
tently (ZYZYZ), again similar to the findings using two-choice RT tasks
(e.g. Cho et al., 2002). It thus appears that, behaviorally speaking, partic-
ipants anticipate runs of alternations and repetitions to continue not
just for target location, but also for the direction of target motion, at
least in a task where target location repetitions are prohibited.

Since our aim was to see whether a model of sequence learning
could also be used tomodel sequential effects, we chose the augmented
SRN (for further details see Cleeremans &McClelland, 1991) to simulate
our results. The SRN (Elman, 1990) is a connectionist model
(Rumelhart, Hinton, & Williams, 1986), which uses a simple error-cor-
rection learning algorithm to simulate humanbehavior. The SRN is com-
posed of a layer of input units which code for the presence of external
stimuli, an output layer whose activation reflects themodel's prediction
about the next item in the sequence, and a hidden layer that connects
the input layer to the output layer (see Fig. 5). The SRN builds a
representation of the sequence of events across time and allows for pre-
vious items in the sequence to affect the prediction regarding the next
element. It achieves this by copying the pattern of activation across
the hidden units on trial t-1 to a set of context units, which provide ad-
ditional input to the hidden units on trial t. This recurrent nature of the
network means that previous trials influence the current trial via the
hidden units.

We used a network architecture with three input and three output
units, representing the three target locations. The activation in both
the hidden layer and input layer were determined using the logistic
function, and the activation in the output units represented the
network's prediction on a given trial. The predicted response efficiency
generated by themodel was calculated by taking Luce's ratio rule (Luce,
1959) of the activations of the outputs, that is, the activation of the cor-
rect target output divided by the sum of the activations of all output
units. Since RT is inversely proportional to prediction strength and re-
sponse efficiency, model output was then calculated by subtracting
this response efficiency estimate from 1. Theweights weremodified ac-
cording to a back-propagation algorithm, which acts to reduce error for
each prediction on a trial-by-trial basis (Rumelhart et al., 1986).

The augmented SRN was originally modified from the SRN to ac-
count for what Cleeremans and McClelland (1991) referred to as
short-term priming. In their experiments, they observed that response
times differed across a variety of sequences of transitions, irrespective
of the structured nature of these sequences (e.g. RTs for QXQX were
faster than VXQX despite both sequences being equally permissible).
They suggested that these patterns in responding could be explained
by priming of sequential pairs of responses (e.g. QX primes activation
of the subsequent QX). In addition to a set of slow weights that were
used to represent relatively permanent long-term sequence learning,
Cleeremans and McClelland included in their model a set of ‘fast’
weights with a fast decay rate that would allow the model to produce
short-term priming effects. This effectively means that each association
(e.g. Q-X) has a short-term and long-term component (or fast and slow
weight), which combine to determine output in the model. The short-
term component produces a large increment in the connection weight
but with a rapid decay rate (half-life of one time step), while the long-
term component produces a smaller increment with a much slower
decay rate. This allows the augmented SRN to predict fast responding
for subsequences where a pair of stimuli are repeated (sequential ef-
fects), as well as long-term learning effects (sequence learning).

To see whether the augmented SRN could simulate the results, we
ran a simulated annealing procedure (Kirkpatrick, Gelatt, & Vecchi,
1983) to find the best fitting parameters (slow learning rate within a



Fig. 6. RTs for each fourth-order subsequence fromExperiments 1 and 2 (a) and correspondingmodel output using 3 variations of the SRN (b-d). B)Model output from the augmented SRN
using a fast learning rate of 1.00, a slow learning rate of 0.029, and 45 hidden units. C)Model output from the original SRNwith a single learning rate of 1.31 and 24 hidden units. D)Model
output from the augmented SRN with the context layer removed using a slow learning rate of 0.089 and fast learning rate of 0.574. Note the different scales on each figure.

Table 2
Best fitting parameters found using a simulated annealing procedure for each version of
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range of 0.01 to 1, fast learning rate within a range of 0.1 to 2.5, and
number of hidden units within a range of 1 to 50) to model the ordinal
fit of the fourth-order subsequence RTs (using Spearman's rho) from
Experiments 1 and 2 (Fig. 6a).4 This procedure gave us a slow learning
rate of 0.03, a fast learning rate of 1.0, and 45 hidden units (see Table
2). Note that the learning rates are strength parameters governing the
adjustments in weights and should not be interpreted in absolute
terms (i.e. the fast learning rate of 1 does notmean that themost recent
trials contributed 100% to the weight changes). Rather, a small learning
rate corresponds to small weight changes, and a large learning rate cor-
responds to largeweight changes. The networkwas then fed the trial se-
quence as generated for the actual participants for both Experiment 1
and 2. This meant that the practice trials, training and transfer phases
were simulatedwith the same number of trials. Using these parameters,
the results of a simulation involving 20 participants for each of Experi-
ments 1 and 2 is shown in Fig. 6b, alongwith the empirical RTs obtained
from both Experiments in Fig. 6a.

The first observation to highlight is that the general order of the
eight subsequences is mostly preserved, and consistent with Experi-
ment 2 there are roughly equivalent cueing effects across each subse-
quence. However, although the model predictions are largely correct
at the second order level, the ordinal fit at the fourth-order level is cer-
tainly not perfect. The augmented SRN has successfully captured the
overall advantage for XYZ subsequences (ending in R) compared to
ZYZ subsequences (ending in A) (i.e. the left half of the figure is lower
than the right half), however the variation within each of the four XYZ
and ZYZ subsequences was not entirely replicated. In particular, when
comparing the model output to the empirical RTs, the SRN predicts a
4 Simulated annealing is a fast parameter optimization procedure that is less susceptible
to problems with local minima than conventional path searches. We used the
simulannealbnd function that is available as part of the Global Optimization Toolbox for
MatLab to run the parameter search.
relatively fast response to XYXYZ (AAR) subsequences, and a relatively
slow response to YZXYZ (RRR) subsequences. Interestingly, both slow
responses to AAR and fast responses to RRR are consistent with partici-
pants learning about sequences of repetitions and alternations of target
direction, something which the SRN cannot explicitly represent. In par-
ticular, the SRN's poor prediction of fast RTs for YZXYZ (RRR) subse-
quences makes sense, since on the current trial (Z), both X and Y
appearmore recently in the trial sequence and should bemore strongly
primed than Z. Thus, there is no reason why responses should be faster
for Z over X and Y, unless the transition from Z-X and then from X-Y are
priming the transition from Y-Z. The SRN's over-prediction of fast re-
sponses for XYXYZ (AAR) is more mysterious, since the Y-Z transition
occurs more recently on YZXYZ (RRR) trials and yet the SRN predicts
slower responses on these trials. While it is obvious that the augmented
SRN fails to capture these aspects of the data, overall, it does an ade-
quate job of simulating the results using only local representation.

The augmented SRN is quite different from the models traditionally
used within the sequential effects literature, and while it is not our aim
to show that the SRN is superior to existingmodels of sequential effects,
it may well be the case that a simpler model might be able to simulate
our results. Still, it is possible to demonstrate that specific properties
of the augmented SRN are critical in allowing it to generate the empiri-
cal data, by repeating the above procedurewithmodified versions of the
SRN (see Table 2 for a comparison of the optimal parameters). The first
version was the SRN in its original form without a set of fast weights
the SRN.

SRN version Slow learning rate Fast learning rate N hidden

Augmented 0.029 1.00 45
Original 1.31 0 24
Augmented minus hidden 0.089 0.574 0



5 It is possible that the use of the arrow keys would have made participants more sen-
sitive to detectingmotion in the sequenced transitions, since these keys are typically used
tomove cursors and tomake similar actionswith objects on computer screens. Note how-
ever that the arrow keys do not convey anything about rotationalmotion and thus would
not be strongly suggestive of the dominant direction of motion that was implemented in
Experiment 2, even though their use may be suggestive of target movement in a general
sense. Any specific direction of motion conferred to the participants by these keys would
have been as likely to hinder, as enhance, the learning of motion in the sequences, due to
the strict counterbalancing of the task elements.
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(i.e., Elman, 1990). The model output using the best fitting parameters
(learning rate of 1.31, 24 hidden units) can be seen in Fig. 6c. It is appar-
ent that the model is certainly able to predict an overall cueing effect,
but it is large in magnitude relative to the size of the sequential effects.
It is also clear that the model fails to replicate the pattern of sequential
effects, with the most glaring discrepancy being that of the second-
order sequential effects.Without the fast learning rate, themodel incor-
rectly predicts that ZYZ subsequences (ending in A) will be faster than
XYZ subsequences (ending in R) (i.e. the left side of the figure is higher
than the right side of the figure).

The second version of the SRN was one in which the hidden layer
was removed such that there was no internal transformation of event
representation (input units were directly connected with outputs via
modifiable slow and fast weights). Fig. 6d shows the model output
with the best fitting parameters (slow learning rate of 0.089 and fast
learning rate of 0.574). Again, themodel is able to predict a large cueing
effect but the pattern of sequential effects is not reproduced. The issue
again concerns the incorrect prediction of the direction of the second-
order sequential effects, with the model predicting ZYZ subsequences
to be faster than XYZ subsequences. Both modified versions of the SRN
also fail to capture the variation amongst each of the XYZ and ZYZ sub-
sequences. Thus, it is clear that both the fast learning rate and the hid-
den layer in the augmented SRN are critical for the prediction of our
obtained results.

It should be noted that the optimal parameters we found are also
quite different in comparison to other studies that have used the aug-
mented SRN (e.g. Cleeremans & McClelland, 1991; Yeates et al., 2013).
For example, our fast learning rate is very high and our slow learning
rate is very low in comparison to that used by Cleeremans and
McClelland (1991), who used 0.15 as their slow learning rate and 0.2
as their fast learning rate. This may be because relative to the size of
the sequential effects, the size of the cueing effect was quite small in
magnitude in our experiments (though consistent across subse-
quences), and the statistic we used to fit the SRN took this into account.
Within the parameter space that we considered, the SRN generally
overestimates the size of the cueing effect relative to the size of sequen-
tial effects. Having a very fast learning rate for the fast decayingweights
serves to increase themagnitude of the sequential effects while keeping
the more stable long-term cueing effect fairly modest.

By focusing on the augmented SRN, we seek to illustrate that se-
quential effects and sequence learning effects should be investigated
using the same theoretic approach, especially since they emerge from
the same response paradigms and on the samemeasures, and their rel-
ative magnitudes could be informative for further model development.
As discussed above, an advantage of the SRN is that itmakes no assump-
tions about the types of statistics that it needs to monitor, since repre-
sentations of repetitions, alternations and target direction are not
explicitly ‘hard-wired’ into themodel. Indeed, the augmented SRNman-
aged to model our results reasonably well without needing to add any-
thing in addition to its representations of each of the three target
locations. This stands in contrast to sequential effects models where
the coding of each unit needs to be determined and implemented ex-
plicitly (e.g. Cho et al., 2002; Jones et al., 2013). However, this feature
of the SRN also makes it far less transparent. For instance, although
the model proposed by Jones et al. (2013) requires a mechanism for
the explicitly coded tracking of event statistics, it is clear what the
model is learning in order to produce sequential effects. It is much less
clear how the sequential representations developed within the archi-
tecture of the SRN allow it to arrive at the predictions illustrated in
Fig. 6b. The SRN has been noted for being sensitive to non-associative
structure and almost symbolic in its computations despite its connec-
tionist architecture due to the representational power of its hidden
layer (Gureckis & Love, 2010). While the structure in our task need
not be described in non-associative terms, the large number of hidden
units needed to model our results does suggest that a complex level of
representation was needed in order to simulate our results. Thus
while the SRN was capable of reproducing our results, it does not pro-
vide a precise answer as to the content of learning.

Despite the nature of the task making the direction of the target sa-
lient in general, it is unclear whether participants learned something
about the target direction in particular, or whether they simply learned
about contingencies between specific target locations. Even in Experi-
ment 2 when the direction of motion was biased in the cued direction
(clockwise, for example) and participants showed a reliable cueing ef-
fect, participants could be displaying this cueing effect because they
have an expectation that the target travels clockwise most of the time,
or because they have an expectation based on the individual contingen-
cies (i.e. they learned that top follows left, right follows top and left fol-
lows right). Knowing that the target moves in the cued direction 75% of
the time entails knowledge about the individual probabilistic contin-
gencies as well, but it is possible to learn the contingencies in the ab-
sence of the abstract relationship concerning movement in a
clockwise or anticlockwise direction.5 Thus, the presence of cueing ef-
fects in Experiment 2 does not necessarily indicate that participants
learned something more abstract than the individual contingencies,
nor whether this knowledge is able to be expressed explicitly. Future
work could explore the nature of this knowledge by implementing var-
ious transfer phases where, for example, the target locations are
changed but the direction of motion kept consistent.

While we did not manipulate task features such as RSI, the mapping
between target location and responses, or placement of the target loca-
tions around the screen, the literature on two-choice SRT suggests that
task features such as these will almost certainly influence the observ-
able pattern of sequential effects. In particular, our task did not allow
for first-order repetitions, which makes it quite different from the
three-choice RT task in Gökaydin et al.’s (2011) study. Since Gökaydin
et al. found that when three different targets were used, participants
primarily showed sequential effects consistent with learning about the
base rates of stimuli, it would be interesting to see how allowing first-
order repetitions would change the pattern of sequential effects
shownhere. Gökaydin et al. also deliberately avoided using spatialmap-
ping from response keys to target location in order to reduce sequential
effects generated by the target placement. It would thus be interesting
to see whether adapting our probabilistic sequence into a task similar
to theirs where different targets appear in the same location on screen
would generate the same sequential effects and to the same degree. In
particular, the large advantage in RT for XYZ subsequences over ZYZ
subsequences may be reversed since alternations of targets (ZYZ) may
be more salient or easier to respond to than sequences of all different
targets (XYZ) when participants have to remember which key to press
for different targets. Whether the SRN would be able to cope with
changing these task features when it can only represent three abstract
target locations or identities, remains to be seen.

In conclusion, the current study demonstrates that similar sequen-
tial effects to that found with repetition and alternation of target loca-
tion in the two-choice SRT literature can also be found in other event
statistics in three-choice SRT such as repetition and alternation of thedi-
rection of target motion. We introduced a novel three-choice SRT task
with a relational property (direction of target movement), which we
then used to bias the contingencies.We found reliable sequential effects
in both Experiment 1where therewas no predominant direction ofmo-
tion, and Experiment 2 where there was a cued direction of motion. Ex-
periment 2 also showed that the pattern of sequential effects did not
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differ between cued and miscued trials once those contingencies were
removed. Participants in both experiments were generally faster on
XYZ trials where the direction of motion was repeated compared to
ZYZ trials where the direction of motion alternated, but within each of
these second-order subsequences, participants were fastest to respond
on runs of repetitions or alternations (respectively) of target direction.
We successfully simulate these cueing and sequential effects with rea-
sonable accuracy using the augmented SRN (Cleeremans &
McClelland, 1991) provided the model contained a relatively large
number of hidden units, a high learning rate for fast weights and a
low learning rate for slow weights. While the model failed to capture
the more subtle effects in the 4th order subsequences, the overall fit
provided by the augmented SRNwas promising and suggests a common
basis for sequence learning and sequential effects.
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