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ABSTRACT
It has been suggested that attention is guided by two factors that operate during
associative learning: a predictiveness principle, by which attention is allocated to
the best predictors of outcomes, and an uncertainty principle, by which attention is
allocated to learn about the less known features of the environment. Recent studies
have shown that predictiveness-driven attention can operate rapidly and in an
automatic way to exploit known relationships. The corresponding characteristics of
uncertainty-driven attention, on the other hand, remain unexplored. In two
experiments we examined whether both predictiveness and uncertainty modulate
attentional processing in an adaptation of the dot probe task. This task provides a
measure of automatic orientation to cues during associative learning. The stimulus
onset asynchrony of the probe display was manipulated in order to explore
temporal characteristics of predictiveness- and uncertainty-driven attentional
effects. Results showed that the predictive status of cues determined selective
attention, with faster attentional capture to predictive than to non-predictive cues.
In contrast, the level of uncertainty slowed down responses to the probe regardless
of the predictive status of the cues. Both predictiveness- and uncertainty-driven
attentional effects were very rapid (at 250 ms from cue onset) and were
automatically activated.
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Visual attention determines which stimuli are prefer-
entially processed. It allows for the focusing of
limited cognitive resources on important aspects of
the environment, to the detriment of processing less
important information. Thus, in order to understand
our cognitive system, it is crucial to investigate
which factors modulate this selection process. These
factors are usually divided into two mutually exclusive
functional categories according to whether atten-
tional modulation is caused by physical characteristics
of the stimuli (i.e., stimulus-driven modulation) or is
caused by cognitive factors such as goal-directed
intentions or motivations (i.e., goal-directed modu-
lation; e.g., Corbetta & Shulman, 2002; Yantis, 2000).
For example, when driving we might use goal-
directed, top-down attention to prioritize processing

of events on the road ahead and to ignore conversa-
tion from the backseat. But a physically salient event
(e.g., a sudden bang from behind the car) will
capture our attention in an bottom-up, stimulus-
driven fashion regardless of our goals (e.g., Folk,
Remington, & Johnston, 1992; Theeuwes, 1992).

However, it has recently been argued that there is a
third category of influences on attentional selection
that is neither fully goal directed nor stimulus driven,
and which comes into play when people have had
previous experience with stimuli. Specifically, it has
been suggested that our attention is influenced by
what we have learned about how stimuli relate to
other events in the environment (Anderson, 2013;
Awh, Belopolsky, & Theeuwes, 2012; Chelazzi,
Perlato, Santandrea, & Della Libera, 2013; Le Pelley,
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Beesley, & Griffiths, in press; Le Pelley, Mitchell,
Beesley, George, & Wills, in press; Le Pelley, Pearson,
Griffiths, & Beesley, 2015).

While the suggestion of a relationship between
learning and attention has received a great deal of
recent interest, it is not a new idea. James (1890/
1983) wrote about derived attention: a form of atten-
tion to a stimulus that “owes its interest to association
with some other immediately interesting thing”
(p. 393). More importantly for current purposes,
models of associative learning proposed over the
last 40 years provide formal accounts of how learning
and attention might interact (see Mitchell & Le Pelley,
2010). These models were developed largely on the
basis of the results of studies of animal conditioning,
but have since been applied to explain behaviour in
studies of human learning. Such “attentional models”
of associative learning propose that the attention
that is paid to a stimulus is influenced by the certainty
or uncertainty of the predictions that it makes about
other events.

In the associative learning literature, uncertainty is
understood as the variance in the nature or magni-
tude of the outcome that follows a cue or an
operant behaviour (Rushworth & Behrens, 2008). For
instance, imagine an urn containing red balls and
yellow balls. If the urn contains 50% red balls and
50% yellow balls, then the uncertainty about the
colour of a randomly drawn ball will be greater than
if the urn contained 80% red and 20% yellow. At the
limit, if the urn contained only red balls, the uncer-
tainty would be zero.

As noted above, attentional models of associative
learning describe how uncertainty might influence
which cue stimuli receive attentional priority for
future learning. For example, according to the influen-
tial model of associative learning proposed by Mackin-
tosh (1975), it is those cues that are the most reliable
predictors of significant events in the environment (i.
e., those cues that most consistently and accurately
predict the events that follow them) that will receive
the greatest amount of attentional processing. We
term this a predictiveness-driven principle for guiding
attention. Phrased in terms of the uncertainty associ-
ated with cues, this model states that those cues
that have, in the past, had more uncertain conse-
quences will tend to receive less attention than
more reliable cues that are presented alongside
them. Thus, the Mackintosh model captures the selec-
tive nature of attention, in that it sees the learning
system as seeking out the most reliable sources of

information. Such attentional biases favouring
certain over uncertain sources of information have
been shown widely in the human and animal learning
literature (for reviews, see Le Pelley, 2004, 2010; Le
Pelley, Mitchell, et al., in press; Pearce & Mackintosh,
2010).

However, when interacting with the world, our aim
is not only to obtain well-predicted and reliable out-
comes or rewards, but also to gather further infor-
mation about the environment and hence reduce
uncertainty. That is, adapted intelligent animals (and
machine learning systems) devote time and effort
towards exploring their environment (e.g., Oudeyer,
Kaplan, & Hafner, 2007). The attentional system may
have an important role to play as part of this uncer-
tainty-reduction process (see Gottlieb, Oudeyer,
Lopes, & Baranes, 2013). Consistent with this idea,
computational modelling suggests that complement-
ing a predictiveness-driven attentional process with
an exploratory attentional mechanism might be an
optimal information-processing strategy (e.g., Dayan,
Kakade, & Montague, 2000). This uncertainty-driven
attentional process is exemplified by the Pearce and
Hall (1980) model of associative learning. According
to this model, cues for which prediction errors have
recently occurred (i.e., cues whose consequences are
highly variable and hence uncertain), will attract
more attention than certain cues (i.e., cues for which
prediction errors have recently been minimal). Uncer-
tainty-driven attention was proposed originally as a
mechanism by which resource optimization is
achieved. This is because uncertainty-driven attention
assigns most cognitive resources to processing those
stimuli whose predictive status is currently poorly
understood, which may be adaptive, since it may
allow the true status of those cues to be clarified
(Pearce & Hall, 1980). In addition, it has been
pointed out that, even considering an unlimited pro-
cessor, exploratory attention would be necessary in
order to avoid local minima in the solution to learning
tasks (Dayan et al., 2000). Suppose a predator learns
that a particular type of abundant yellow beetle
makes a tasty meal. If this predator used an exploita-
tive attentional strategy, it would subsequently hunt
exclusively for yellow beetles and ignore other poten-
tial sources of food (say, somewhat rarer red spiders)
that may also be palatable (Bond & Kamil, 1998). But
the availability of different prey can change over
time. Suppose that, for some reason, the once-abun-
dant yellow beetles become less common than red
spiders. Our “pure exploitation” predator would now
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be at a disadvantage, since it would remain hunting
for a scarce resource when an easier alternative is
available. In contrast, a predator that occasionally
changes its foraging strategy and explores other
potential prey items (about which it is currently uncer-
tain) would rapidly learn to increase its reliance on red
spiders and may thus be more likely to thrive.

Animal experimentation has shown results consist-
ent with the operation of uncertainty-driven attention
(Haselgrove, Esber, Pearce, & Jones, 2010; Kaye &
Pearce, 1984a; Swan & Pearce, 1988; Wilson, Boum-
phrey, & Pearce, 1992), and the neural basis of this
mechanism has been delimited to critical involvement
of the prefrontal and amygdala regions (Fiorillo,
Tobler, & Schultz, 2003; Roesch, Esber, Li, Daw, &
Schoenbaum, 2012). There are also experiments
(though not many) that support a role for uncer-
tainty-driven attention in human causal learning
tasks (Beesley, Nguyen, Pearson, & Le Pelley, 2015;
Griffiths, Johnson, & Mitchell, 2011; Hogarth, Dickin-
son, Austin, Brown, & Duka, 2008; for a review, see
Le Pelley, Mitchell, et al., in press).

From a theoretical point of view, predictiveness-
driven and uncertainty-driven attentional processes
are not necessarily exclusive. Indeed, modern atten-
tional models of associative learning have strived to
incorporate both principles, either in so-called
“hybrid” or dual-process models (e.g., Le Pelley,
2004; Pearce & Mackintosh, 2010), or in a flexible
single-process account (Esber & Haselgrove, 2011).
Supporting this view, Beesley et al. (2015) showed
that overt attention to stimuli (measured via eye track-
ing) could be determined by both predictiveness and
uncertainty within the same task. These experiments
used a learned predictiveness design (Le Pelley &
McLaren, 2003; Lochmann & Wills, 2003) in which, on
each trial, participants were presented with a com-
pound of two cues and had to predict which
outcome would occur following that compound; cor-
rective feedback was provided. Only one cue from
each pair (the predictive cue) was informative of the
outcome, while the other cue was non-predictive,
since it was paired with each of the two outcomes
equally often. When eye-gaze dwell times to predic-
tive and non-predictive cues were analysed, results
complied with the predictiveness-driven principle;
people spent longer looking at predictive cues than
non-predictive cues (see also Le Pelley, Beesley, & Grif-
fiths, 2011). Beesley et al. also manipulated the uncer-
tainty of each compound. In the certain condition,
each compound had a deterministic relationship

with its paired outcome (that is, the same outcome
always followed a particular compound), such that
participants experienced minimal prediction errors
once the contingencies were learned. In contrast, for
the uncertain condition, compound–outcome relation-
ships were probabilistic (that is, each compound was
typically, but not always, followed by one of the out-
comes), and so occasional prediction errors were
inevitable, even after asymptotic learning. Dwell-time
analysis revealed that participants spent a greater pro-
portion of the trial time attending to the cues in uncer-
tain compounds than to the cues in certain
compounds, regardless of the predictive status (pre-
dictive/non-predictive) of those cues—that is, a main
effect of uncertainty, but no interaction between
uncertainty and predictiveness. Thus, Beesley et al.’s
results suggest that predictiveness-driven attention
determines the selection of the most predictive stimu-
lus from the environment, while uncertainty-driven
attention reflects a mechanism that prioritizes
exploration of cues when recent prediction errors
have been experienced.

The current article concerns the nature of the
attentional processes underlying predictiveness-
driven and uncertainty-driven attention. Recent
research suggests that learning can exert an effect
on attentional capture by stimuli that is rapid and
automatic, in the sense that it occurs regardless of
task demands and participants’ ongoing goals (see
Anderson, 2013; Awh et al., 2012; Chelazzi et al.,
2013; Le Pelley, Mitchell, et al., in press; Le Pelley
et al., 2015). These previous studies considered the
influence of learning about the value of rewards
paired with stimuli (so-called value-driven attentional
capture). In the experiments reported here, we investi-
gated whether this pattern of rapid and automatic
capture also applies to changes in attention that are
driven by learning about the variability of outcomes
paired with stimuli, in terms of predictiveness and
uncertainty.

Toward this end, we explored the influence of pre-
dictiveness and uncertainty on attention using a
variant of the spatial cueing task (Posner, Nissen, &
Ogden, 1978). Specifically, we used an adaptation of
the dot probe task (MacLeod, Mathews, & Tata, 1986),
which we have previously used to study the operation
of predictiveness-driven attentional processes during
associative learning (Le Pelley, Vadillo, & Luque,
2013). In the current experiments, participants were
initially trained on an associative learning (AL) task:
On each trial, two cues were presented on the screen,
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and participantsmade a categorization response (does
this pair of cues belong to the “up” category or the
“down” category?), with immediate corrective feed-
back provided. Later, a dot probe task was superim-
posed on this AL task. Now when the two cues were
presented on each trial, participants first had to
respond as rapidly as possible to a probe stimulus
that appeared over one cue (with equal likelihood of
the probe appearing on either of the two cues),
before subsequentlymaking a categorization response
as part of the AL task, just as before. Critically, this pro-
cedure allowed us to manipulate the predictiveness
and uncertainty of cues and compounds in the AL
task and observe the resulting influence on attention
to cues through response times on the dot probe
task. That is, if the contingencies in the AL task were
such as to cause participants to selectively attend to
one cue over the other, then responses to the probe
stimulus should have been faster if it appeared in the
location of the attended cue than its counterpart (cf.
MacLeod et al., 1986; Posner et al., 1978). Varying the
timing of the probe onset allowed us to examine the
time-course of attentional orienting and disengage-
ment of attention to cues as a function of their predic-
tiveness and uncertainty.

Using such a task, Le Pelley et al. (2013) showed
that responses to the probe were faster when it
appeared in the location of a predictive cue than a
non-predictive cue, if the probe appeared rapidly
after cue onset (with a stimulus onset asynchrony,
SOA, of 250–350 ms). Crucially, since the probe was
equally likely to occur in the position of the predictive
and non-predictive cue, there was no advantage to be
gained in directing greater attention to one type of
cue than the other, prior to the probe presentation.
Indeed, participants were explicitly informed that in
order to respond to the probe as quickly as possible,
their best strategy was to ignore the initially presented
cues. Since attentional bias towards predictive cues
was not required by the dot probe task or indeed an
adaptive strategy with regard to that task, the impli-
cation is that the observed bias reflected the oper-
ation of a process independent of participants’ goal
for this task (i.e., to localize the probe as quickly as
possible). Consistent with this idea, Le Pelley et al.
(2013) demonstrated that providing more time for
participants to consciously process the stimuli—by
increasing the SOA on dot probe trials to 1000 ms—
significantly weakened the influence of predictiveness
on dot probe responding. This supports the idea that
the bias towards predictive cues observed in the short

SOA condition was not a result of goal-directed, con-
trolled processing but instead an automatic, rapid,
and short-lived attentional process within the region
of 250 milliseconds after cue onset (for convergent
evidence, see Feldmann-Wüstefeld, Uengoer, &
Schubö, 2015).1

The current experiments examined whether
manipulations of uncertainty also influence atten-
tional processing in the dot probe task and hence
whether this influence reflects a rapid and automatic
process. It might be expected that in contrast to the
predictiveness factor, uncertainty promotes the
engagement of a more controlled, goal-directed
process: Pearce and Hall (1980) described an uncer-
tainty-driven increase in attention in their model as
reflecting a “controlled processing strategy” (Pearce &
Hall, 1980, p. 549, italics in original). Yet to date, this
suggestion of a processing distinction between atten-
tional processes remains untested in the human (or
animal) associative learning literature.

The current experiments explored attention to cues
during associative learning with designs that follow
Beesley et al. (2015) in simultaneously manipulating
the level of uncertainty for compounds of cues and
the level of predictiveness of cues within each com-
pound. Beesley et al.’s experiments did not permit an
examination of whether uncertainty-driven effects
were produced by automatic and/or controlled
changes in covert attention, since the time-course of
participants’ gaze was not assessed. By using the dot-
probe task, the current experiments examine the
time-course of attention by varying the SOA between
presentation of the cues and appearance of the
probe as a within-subject variable. Thus, the current
experiments go beyond the experiments of Beesley
et al. in providing an examination of the automatic/
controlled nature of uncertainty-driven attention.

If uncertainty-driven attention reflects a controlled,
goal-directed process (for instance, as a consequence
of a volitional effort to find new information so as to
minimize errors in the AL task), we should not necess-
arily expect to observe an influence of uncertainty
(defined with regard to the AL task) on rapid responses
to the dot probe, since participants have ample time to
freely explore the cues following their dot probe
response. In contrast, if uncertainty-driven attention
is rapid and automatic (as seems to be the case for
value-driven and predictiveness-driven attention), the
manipulation of uncertainty would be expected to
affect the responses to the dot probe. However, the
specific pattern to be anticipated under this latter
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hypothesis is unclear. For instance, it is possible that
uncertain cues may initiate a general increase in
arousal or vigilance and hence decreased response
times to probes. On the other hand, itmay also be poss-
ible that uncertainty produces a rapid and automatic
exploratory examination of the cues, in search of new
information that will assist in reducing prediction
error. Such diffuse deployment of attention may
hinder the localization of the probe and hence result
in increased response times in the dot probe task
under conditions of uncertainty.

Experiment 1

Method

Participants and apparatus
For both experiments, we guided our decision on
sample sizes using estimates from Le Pelley et al.’s
(2013) Experiment 2, which is the closest existing pro-
cedure to the current experiments. Since we expected
to replicate the predictiveness result found by Le Pelley
et al. in their short SOA condition, we took the effect
size from this condition for the current power analysis.
The effect size from this experiment was h2

p = .07; con-
sidering that effect size, the needed sample for a power
of .8 is 21 participants. Thus, we aimed to achieve 20–25
valid cases per SOA condition after the application of
our rejection criteria (see above).

Based on our experience with this type of task, we
estimated that around 3 out of 4 of all participants
would pass our rejection criterion. In order to achieve
20–25 valid cases per condition, 70 University of New
South Wales (UNSW) Australia students participated
for course credit in the Experiment 1. Participants
were randomly allocated to either the 250- or the
1000-ms SOA conditions. They were tested in individ-
ual enclosed cubicles, using standard PCs with 58.4-
cm monitors (1920 × 1080-pixel resolution, 120 Hz), at
a viewing distance of approximately 60 cm. Stimulus
presentation was controlled by the Cogent 2000
toolbox (Cogent 2000 team, Wellcome Trust, London,
UK) running under MATLAB (Mathworks Inc.). Partici-
pants made all responses with their right hand, using
the arrow keys of custom keyboards, which provide
average response latencies of around 1 millisecond
(DirectIN keyboard, Empirisoft, New York).

Stimuli
Cues were eight coloured polygons, which differed in
colour and the thickness of their “spikes” (see Figure

1B). Colours (RGB) and relative luminance (on a 255-
level scale) for colours were as follows: red (R255,
G0, B0; L54), yellow (R230, G230, B51; L217), green
(R0, G204, B51; L150), turquoise (R51, G255, B255;
L212), blue (R0, G128, B255; L110), magenta (R255,
G51, B255; L109), brown (R153, G102, B0; L105), and
salmon (R255, G128, B128; L155). The polygon
shapes were framed by white squares with sides sub-
tending 4.7° visual angle. For each participant these
stimuli were randomly assigned to play the roles of
the various cues shown in Table 1. The cue stimuli
were presented on the horizontal midline of the
screen, on either side of a small, central fixation
cross. The distance from the centre of the cross to
the centre of each square subtended 4.7°. The probe
was a white square, which subtended 0.67°. This
appeared superimposed centrally on one of the
stimuli. The screen background was black.

Design
The experiment contained three phases (see Table 1):
The pretraining phase established the cue–outcome
contingencies in the absence of the dot probe task;
Phase 1 continued training these cue–outcome con-
tingencies in the presence of the dot probe task;
and Phase 2 involved a manipulation of the uncer-
tainty of the relationships between compounds of
cues and the outcomes with which they were paired.

For the associative learning (AL) task in pretraining
and Phase 1, participants were required to make either
an up or down categorization response on each trial;
Table 1 shows the correct response to each of the
eight cue compounds that were presented. Each com-
pound contained one predictive cue (labelled p1, p2,
p3, and p4 in Table 1) and one non-predictive cue
(labelled n1, n2, n3, and n4). As can be seen in Table
1, predictive cues consistently indicated the correct
categorization response during these phases; for
instance, whenever p1 appeared, the correct response
was always response R1 (up or down, counterbalanced
across participants). Thus, once the contingencies
were learned, the participants could make these
responses accurately using only the information pro-
vided by the predictive cues and therefore perfectly
predict the correct response on each trial. In contrast,
non-predictive cues provided no information regard-
ing the correct response (e.g., for half of the appear-
ances of n1 the correct response was R1, for the
other half it was R2, see Table 1), and therefore the
outcome could not be anticipated using these non-
predictive cues alone.
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The left/right positions in which cues appeared
were counterbalanced within each block. Hence
each block of the pretraining phase contained two
presentations of each of the eight compounds
shown in Table 1, one with the predictive stimulus
on the left and one with the predictive stimulus on

the right. This resulted in 16 trials per block, and the
pretraining phase involved four such blocks.

The dot probe task was superimposed on the AL
task in Phase 1. We needed to ensure that the probe
was equally likely to appear over either cue of each
compound (e.g., that the probe was equally likely to

Figure 1. Panel A shows the trial structure for Phases 1 and 2 of Experiment 1. RT = response time. Participants were instructed to respond the
position of the probe (left or right) as fast as possible. This probe was presented 250 or 1000 ms after cue onset, depending on the stimulus onset
asynchrony (SOA) condition. After the dot probe response, participants made a predictive response for the associative learning task (up or down).
If this predictive response was incorrect, error feedback was provided (not shown). Panel B shows the eight stimuli used as cues. The four stimuli
also used for Experiment 2 are framed. Mean response times (Panel C) and mean proportions of “probable outcome” responses (Panel D) are
shown for the associative learning task. Error bars represent standard error of the mean. To view this figure in colour, please visit the online
version of this Journal.

Table 1. Experiment 1 design.

Only associative learning task Dot probe task and associative learning task

Pretraining
4 blocks × 8 trials

Phase 1
8 blocks × 32 trials

Phase 2
96 trials

p1 and n1 → R1
p1 and n2 → R1
p2 and n1 → R2
p2 and n2 → R2
p3 and n3 → R1
p3 and n4 → R1
p4 and n3 → R2
p4 and n4 → R2

p1 and n1 → R1
p1 and n2 → R1
p2 and n1 → R2
p2 and n2 → R2
p3 and n3 → R1
p3 and n4 → R1
p4 and n3 → R2
p4 and n4 → R2

Certain compounds
p1 and n1 → R1
p2 and n2 → R2

Uncertain compounds
p3 and n3 → R1 (67%) / R2 (33%)
p4 and n4 → R2 (67%) / R1 (33%)

Note: p1–p4 denote cues that were predictive with regard to the associative learning task during pretraining and Phase 1; n1–n4 denote cues
that were non-predictive. R1 and R2 denote the correct categorization response for each cue compound (up and down, counterbalanced).
During Phase 2, certain compounds are those for which the same categorization response was correct through Phase 2; uncertain compounds
are those for which one categorization response was correct on two thirds of appearances in Phase 2, while the other response was correct on
one third of appearances. The probe was equally likely to appear in the location of all cues during Phase 1 and Phase 2.
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appear over cue p1 as it was to appear over cue n1),
such that there was no reason for participants to stra-
tegically orient attention to one or other cue prior to
the appearance of the probe. Consequently, each
block of Phase 1 comprised 32 trials: every combi-
nation of the eight compounds, the left/right position-
ing of cues, and the left/right location of the probe.
Trials within a block were presented in a random
order. There were eight such blocks in Phase 1.

Four compounds were presented in Phase 2, again
with the left/right position of the cues and left/right
location of the probe counterbalanced. In addition
to these factors, we also manipulated uncertainty.
During Phase 2, each of the four compounds shown
in Table 1 was presented 24 times. For the uncertain
compounds, on 16 of these 24 presentations (67%)
the correct response was consistent with the response
that had been correct for that compound during
Phase 1, while on the remaining eight trials (33%)
the correct response was inconsistent with prior train-
ing. Within the consistent and inconsistent trial types,
cue and probe location were counterbalanced, as
before. For the certain compounds, the correct
response was always consistent with the correct
response in Phase 1. Trial order was randomized.

The SOA of the probe (250 or 1000 ms) was
manipulated between subjects, and the same SOA
applied throughout Phase 1 and Phase 2.

Procedure
Initial instructions described the AL task: Participants
were told that on each trial a pair of stimuli would
appear and that they were required to make a
response using either the up or the down arrow key.
They were informed that their task was to learn the
correct response for each stimulus pair. Participants
then completed the pretraining phase. Each trial
began with the presentation of a central fixation
cross, followed after 500 ms by two cue stimuli. One
second after the presentation of the cues, the text
“UP or DOWN?” appeared centred on the screen in
the space between the two cues (30-point Arial font
for the words “UP” and “DOWN”, 20-point for the
word “or”). This way, the cues were still visible even
with the text on the screen. Participants made a categ-
orization response using the up or down arrow keys,
and this response was allowed only when the words
“UP or DOWN?” were on the screen. If the response
was correct, no explicit feedback was provided, and
the next trial began after an inter-trial interval of 1
s. If the response was incorrect, then the message

“incorrect” appeared for 3 s, followed by the inter-
trial interval. Participants could take as long as they
liked to make the categorization response in all
phases.

Instructions prior to Phase 1 stated that partici-
pants would now have to perform an additional task
on each trial, which was to respond as rapidly as poss-
ible to the location of a small white square, using the
left and right arrow keys. Figure 1A shows a schematic
of a typical trial in Phases 1 and 2. After an initial fix-
ation interval of 500 ms, the two cues appeared.
Then, after an SOA of 250 ms (short SOA condition)
or 1000 ms (long SOA condition), the probe appeared,
superimposed on the centre of one of the cues. This
probe remained on screen until participants made
the correct response (left arrow key for a probe pre-
sented on the left; right arrow key for a probe on
the right). Immediately after making the correct
response to the location of the probe, the probe disap-
peared, and participants made their categorization
response as before. The cues were visible for the dur-
ation of the trial (see Figure 1A). Participants were told
that in order to respond to the white square (the
probe) as quickly as possible, the best strategy was
to ignore the coloured polygons until after they had
made their left/right response to the square. Specifi-
cally, this instruction was as follows: “Try to respond
to the square as fast as you can. To do so, it is best if
you ignore the two figures until you have responded to
the location of the square” (the instructions also
showed the text underlined). Participants completed
the experiment in a single 45-minute session.

Results and discussion

Data pre-processing
Averaged across all participants, accuracy on the AL
task increased during training and reached a high
level by the end of Phase 1 (see Figure 1D; for RTs
see Figure 1C). Since our results in Phase 2 depended
on appropriate acquisition of the associative contin-
gencies in Phase 1, participants who performed with
less than 60% accuracy during the final three blocks
of Phase 1 were removed from the analysis. As a con-
sequence of this criterion, the data from 16 partici-
pants were not analysed further (final sample, N =
54, with 27 in each SOA condition).

For the analysis of dot probe response times we
adopted a pre-processing pipeline very similar to
that used by Le Pelley et al. (2013, Experiments 2
and 3). Since the dot-probe task provided no explicit
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feedback on response accuracy, trials in which an
incorrect response was made at any point during
the presentation of the probe were not analysed (1%
of all trials); nor were trials in which responses were
very fast (under 150 ms) or very slow (over 1000 ms;
5% of all trials). Finally, as a guard against within-par-
ticipant outliers, trials with RTs to the probe lying more
than 2.5 standard deviations from each participant’s
mean were also excluded from analysis (1% of the
remaining trials).

Statistical analyses
All tests were performed at the α = .05 significance
level. For repeated measures analysis of variance
(ANOVA), Greenhouse–Geisser alpha correction was
applied when necessary.

Dot probe task: response time
Figure 2 shows RTs to the probe averaged across
blocks for Phases 1 and 2. Regarding the Phase 1
results, a 2 (SOA: short vs. long) × 2 (predictiveness:
probe on predictive cue vs. probe on non-predictive

cue) ANOVA yielded a main effect of predictiveness,
F(1, 52) = 6.41, p = .014, = .11, and a significant Predic-
tiveness × SOA interaction, F(1, 52) = 14.18, p < .001,
= .21. The main effect of SOA was not significant, F(1,
52) = 0.21, p = .652, < .01. To explore the interaction
further, paired t-tests examined the influence of the
predictiveness factor at each level of the SOA factor.
These revealed that RTs were faster when the probe
was positioned over predictive stimuli than over
non-predictive stimuli at short SOA, t(26) = 4.03, p
< .001, d = 0.78, but there was no significant difference
in performance at long SOA, t(26) = 0.99, p = .333, d =
−0.19. Thus, predictiveness-driven attentional capture
was observed when attention was measured 250 ms
after cue onset, and this effect had dissipated by
1000 ms, replicating the findings of Le Pelley et al.
(2013).

Probe RTs in Phase 2 were analysed by repeated
measures ANOVA with factors of predictiveness,
SOA, and the uncertainty associated with each com-
pound (certain compounds vs. uncertain compounds).
This revealed a main effect of predictiveness, F(1, 52)
= 6.96, p = .011, = .12, with faster RTs when the probe
appeared in the location of a predictive cue than of a
non-predictive cue. There was also a main effect of
uncertainty, F(1, 52) = 43.89, p < .001, = .46, with
faster RTs to probes on trials featuring certain com-
pounds than on those featuring uncertain com-
pounds. The main effect of SOA was not significant,
F(1, 52) = 1.75, p = .191, = .03, and there were no sig-
nificant interaction effects, all Fs(1,52)≤ 1.92,
ps≥ .171, s < .4.

Dot probe task: accuracy
We analysed accuracy in the dot probe task in order to
assess whether the uncertainty and/or predictiveness
effects detected in RTs to the probe could be
accounted for by a speed–accuracy trade-off. In
general, mean accuracy of dot probe responses was
high (M = .990, SEM = .01). First, we assessed whether
the SOA × Predictiveness interaction for RTs in Phase
1 was produced by a speed–accuracy trade-off. For
this, we conducted a 2 (SOA) × 2 (predictiveness)
ANOVA on the dot probe accuracy data. This yielded
a significant main effect of SOA, F(1, 52) = 5.08, p
= .028, = .09, but no significant effect of predictive-
ness, F(1, 52) = 2.38, p = .129, = .04, nor an interaction,
F(1, 52) = 0.46, p = .499, < .01. The main effect of SOA
was produced by less accurate responses in the short
SOA condition (M = .987, SEM = .002) than in the long
SOA condition (M = .992, SEM = .002). This analysis

Figure 2. Mean response times to the probe in the Experiment 1. The
upper panel shows results in the short stimulus onset asynchrony
(SOA) condition (SOA = 250 ms); the lower panel shows results for
the long SOA condition (SOA = 1000 ms). Error bars represent stan-
dard error of the mean. To view this figure in colour, please visit the
online version of this Journal.
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suggests that the SOA × Predictiveness interaction
obtained in the RT dependent variable during Phase
1 is not due to a speed–accuracy trade-off.

The same strategy was applied to the Phase 2 data.
Since we obtained predictiveness and uncertainty
main effects in the RT results, we assessed whether
there was any difference in accuracy regarding these
two independent variables. A 2 (predictiveness) × 2
(uncertainty) ANOVA revealed no significant main
effects or interactions, all Fs < 1. Thus, none of the
effects found in the RTs to the probe can be attributed
to speed–accuracy trade-offs.

To summarize, RTs were faster when the probe
appeared in a location pre-cued by a predictive,
rather than a non-predictive, stimulus. During Phase
1 this effect was evident only in the short SOA con-
dition, and not in the long SOA condition, replicating
the effects obtained by Le Pelley et al. (2013). These
data are therefore consistent with the idea that predic-
tive stimuli elicit rapid attentional capture, but that
this effect also dissipates rapidly, to the extent that it
plays no further observable role by 1000 ms. [While
the corresponding Predictiveness × SOA interaction
did not reach significance in Phase 2, we note that
for the certain compounds (which are comparable to
those experienced in Phase 1), paired t tests revealed
a significant effect of predictiveness at short SOAs, t
(26) = 2.47, p = .020, d = 0.47, but not at long SOAs, t
(26) = 0.02, p = .980, d < 0.01.]

Attentional models of associative learning (e.g.,
Esber & Haselgrove, 2011; Le Pelley, 2004; Pearce &
Hall, 1980; Pearce & Mackintosh, 2010) predict that
the manipulation of uncertainty should affect the
attention paid to uncertain compounds experienced
during Phase 2. Experiment 1 examined the effect of
any such influence of uncertainty on responses in
the dot probe task. We observed slower responses
to the probe when it was pre-cued by an uncertain
compound than by a certain compound, and this
effect did not interact with the length of the SOA.
These data suggest that the process underpinning
this effect of uncertainty was activated rapidly and
automatically by the onset of the cues and persisted
for at least 1000 ms. [Indeed, a significant simple
effect of uncertainty was evident in both SOA con-
ditions: short SOA, t(26) = 6.01, p < .001, d = 1.16;
long SOA, t(26) = 3.59, p = .001, d = 0.69.]

The increase in response times to the probe in the
uncertain condition suggests a modulation of atten-
tional processing by these cues, whereby the uncer-
tainty of the associated outcome decreases the

attentional resources devoted to detecting the
probe. The fact that this effect was observed in the
short SOA condition indicates that the effect was
rapidly elicited by the onset of the cues. Moreover,
this effect was observed in a task that did not
require participants to encode the identity of the
cues. Cue identity was important only for responding
on the AL task, and this response was made after par-
ticipants had responded to the dot probe. Indeed, par-
ticipants were explicitly instructed to not pay
attention to the two cues during the dot probe task.
The finding of an effect of uncertainty on dot probe
responding under these conditions is compatible
with the hypothesis that uncertainty-driven attention,
like predictiveness-driven attention, reflects a rapid
process that operates independently of participants’
ongoing task goals. We return to the theoretical dis-
cussion of this effect in the General Discussion, but
first address possible alternative accounts of this key
finding in Experiment 2.

Experiment 2

An alternative account of the effect of uncertainty on
dot probe responding observed in Experiment 1
focuses on the conflict that exists between responding
in the dot probe task and responding in the AL task.
Recall that on each trial participants responded to
the position of the probe and then made a choice
response as to which action was correct (up or
down). As a result of the inevitable prediction errors
that would be made to the uncertain compounds in
Phase 2, participants may have come to associate
these compounds with both prediction responses
(up and down). It is possible that these associations
then led to greater response competition on the dot
probe task: A cue associated with both up and down
may interfere with probe responding more than a
cue associated with either the up or the down
response. A further alternative account along the
same lines appeals to an inhibitory control process.
During early phases, participants may develop habit-
ual response tendencies to all compounds (e.g.,
respond up to p1 and n1, respond down to p4 and
n4, etc.). During Phase 2, the errors that are occasion-
ally produced by these responses for uncertain com-
pounds may then lead to automatic engagement of
an inhibitory process that suppresses this habitual ten-
dency. Since response inhibition needs sufficient time
in order to have an effect on controlling responses
(Osman, Kornblum, & Meyer, 1986), it is likely to be
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advantageous to start the inhibition process at the
moment of cue onset, and so it may well be initiated
before the resolution of the dot probe response.
Assuming that this inhibitory process generalizes
beyond the specific response that is the intention of
the inhibition (that is, it results—to some extent—in
suppression of all responses, not just the habitual up
or down response), it will lead to a general slowing
of response times to the probe on uncertain trials, as
observed.

Experiment 2 was designed to minimize any influ-
ence of response interference or inhibition produced
by uncertainty variations in the AL task on dot probe
performance. Observing an influence of uncertainty
on dot probe responding under these conditions
would undermine the alternative, non-attentional
accounts advanced in the previous paragraph and
thus increase support for the account based on atten-
tional resource re-allocation raised in the Discussion of
Experiment 1.

In Experiment 2 we reduced the response interfer-
ence between the AL and the dot probe tasks by sub-
stantially changing the experimental procedure. First,
dot probe and AL tasks were programmed to occur
on separate and alternating trials, and participants
were prompted about which type of task was to be
completed before each trial began. Separating the
two tasks should reduce the extent to which the AL
response tendencies were activated by the cues
during the dot probe task (and vice versa), and
hence competitive or inhibitory processes elicited by
these tendencies should be minimized. In support of
this rationale, it is well established that behavioural
effects of interfering habitual responses are dimin-
ished when participants have the opportunity to
anticipate such a conflict (e.g., Logan & Zbrodoff,
1982). Thus, external signals can be used to bias the
relevant set of stimulus–response representations,
leading to a reduction in response interference. Clear
evidence of a conflict resolution process has also
been shown in electroencephalography (EEG) exper-
iments. These experiments show that neural markers
of conflict resolution (e.g., N200) are activated at
signals-of-conflict onset, with the magnitude of
these markers drastically reduced during the actual
conflicting trial (e.g., Correa, Rao, & Nobre, 2009). To
further reduce interference between the two tasks,
each task had a different set of responses, which
required the use of different hands.

Splitting the two tasks into separate trials has a
further advantage, in terms of minimizing the

potential for overlap between task goals. We argued
earlier that, in Experiment 1, the best strategy was to
ignore cue identity until after the dot probe response
had been made, and only then to identify the cues in
order to decide on the correct categorization response
for the AL task. Indeed, participants were explicitly
informed that they should ignore the cues until after
they had responded to the dot probe. However, it is
possible that (some) participants may have neverthe-
less prioritized the AL task and begun preparing
their categorization response before the dot probe
appeared. Under these conditions, task goals from
the AL task—relating to the identity of the cues—
may have “bled into” the dot probe task. On this
account, the pattern of response times for the dot
probe task in Experiment 1 may have resulted from
a goal-directed attentional strategy being applied to
the AL task. Separating the dot probe and AL tasks
in Experiment 2 (and explicitly informing and fore-
warning participants of the task to be performed on
each trial) allowed us to rule out this possibility.
There was now no strategic reason at all for partici-
pants to encode cue identity on dot probe trials,
since there was no upcoming categorization response
to prepare on these trials.

In sum, the procedure in Experiment 2 was
designed to minimize the potential impact of any
competition between the responses required by the
different tasks, or generalization of motor response
inhibition. In addition, Experiment 2 provided a stron-
ger test of the hypothesis that predictiveness- and
uncertainty-driven attentional capture are indepen-
dent of participants’ ongoing task goals.

Method

Participants and apparatus
The AL task of Experiment 2 was easier for participants
to learn than that in Experiment 1 (see below). There-
fore, we expected that not that many participants
would fail to meet the data selection criteria. Hence,
in order to equal the number of “valid” cases in each
experiment (aiming 20–25 per condition), we
reduced the number of participants in Experiment
2. Fifty-five UNSW Australia students participated for
course credit. The apparatus was identical to that in
Experiment 1.

Stimuli
Stimuli were the same as those used in Experiment
1. Since Experiment 2’s design needed fewer stimuli
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(see Table 2), only a subset of the stimuli were used
(see Figure 1B; the subset of stimuli used in Exper-
iment 2 are framed).

Design
The design was similar to that of Experiment 1 and
included three phases: pretraining, Phase 1, and
Phase 2 (see Table 2). However, Experiment 2 involved
half the number of cues and compounds as in Exper-
iment 1; this made the AL stimulus–response contin-
gencies much easier for participants to learn.
Specifically, in pretraining and Phase 1, participants
encountered four different compounds, and in Phase
2 there were two compounds. One of these com-
pounds (p1 and n1 in Table 2) maintained a certain
relationship with the AL response (i.e., R1 was the
correct response on all Phase 2 trials of the AL task).
The other compound, p2 and n2, transitioned to an
uncertain relationship with the previously established
AL response, R2. For example, for participants in the
counterbalancing condition in which down was the
correct response for p2 and n2 trials throughout
Phase 1 (i.e., R2 was down), the correct response for
this same compound was down on just two thirds of
the Phase 2 trials, and up (i.e., R1) was the correct
response on the remaining one third of trials. Cue
locations and probe location were counterbalanced
for each compound as in Experiment 1. The pretrain-
ing phase included six blocks, with each block com-
prising eight trials. Each block in Phase 1 comprised
16 dot probe and 16 AL trials, due to the counterbalan-
cing of the probe position. There were seven blocks in
Phase 1. Phase 2 comprised 96 dot probe and 96 AL
trials. As in Experiment 1, the additional number of
trials as compared with Phase 1 was needed in order
to implement the probabilistic relationship of the
uncertain condition. The SOA of the probe (250 ms
or 1000 ms) was manipulated between subjects.

Procedure
The procedure was similar to that of Experiment 1,
with the following exceptions. During Phase 1 and
Phase 2, the AL and dot probe tasks were now pro-
grammed as independent, alternating trials. That is,
the first trial of each phase involved only the AL
task; the next trial involved only the dot probe task;
the next trial returned to the AL task, and so on. In
both tasks, corrective feedback was provided after
every incorrect response.

In order to distinguish the two tasks as clearly as
possible, and with the aim of avoiding any response

interference, the responses required in the different
tasks were more distinct than those in Experiment
1. For the dot probe task the responses were again
the left and right arrow keys. However, the responses
for the AL task were now the keys “A” and “Z”. Partici-
pants were instructed to respond to the two tasks
using different hands (left hand for the AL task and
right hand for the dot probe task).

The fixation cross at the start of each trial was
replaced by a sign that indicated whether the upcom-
ing trial was going to be an AL trial or a dot probe trial.
This sign appeared in the centre of the screen for 500
ms before the cues were presented. For the AL trials
the sign was the letter “A” above the letter “Z”; for
the dot probe trials, the sign was two white arrows
pointing left and right (see Figure 3A). These signs
remained on the screen throughout each trial. The
screen with the text “UP or DOWN?” was not pre-
sented in AL trials, since the “A–Z” sign worked as a
reminder for the response options available in these
trials.

Results and discussion

Data pre-processing
We used the same selection criterion as that in Exper-
iment 1. As a consequence of this criterion, six partici-
pants were removed from the final sample (final N =
49, with 25 participants in the short SOA condition).
As in Experiment 1, RTs from trials with incorrect
responses to the probe were not analysed. These
responses amounted to 0.8% of all dot probe trials.
As in Experiment 1, probe responses that were very
fast (under 150 ms) or very slow (over 1000 ms) were
also deleted (8% of all trials). Finally, dot probe trials
with RTs lying more than 2.5 standard deviations
from each participant’s mean were also excluded
from analysis (0.5% of the remaining trials). See
Figures 3B and 3C.

Dot probe task: response times
Figure 4 shows RTs to the probe averaged across
blocks for Phases 1 and 2. Regarding the Phase 1
results, a 2 (SOA: short vs. long) × 2 (predictiveness:
predictive vs. non-predictive) ANOVA yielded a main
effect of predictiveness, F(1, 47) = 14.86, p < .001,
= .24, and a significant Predictiveness × SOA inter-
action, F(1, 47) = 10.14, p < .001, = .18. The main
effect of SOA was not significant, F(1, 47) = 2.14, p
= .15, = .04. Paired t-tests at each level of SOA
revealed significantly faster RTs when the probe was
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cued by a predictive stimulus than by a non-predictive
stimulus in the short SOA condition, t(24) = 4.08,
p < .001, d = 0.82, but not in the long SOA condition,
t(23) = 0.70, p = .494, d = 0.14. This replicates the
pattern observed in Experiment 1. It is notable that
the effect size for this predictiveness effect in the
short SOA condition (d = 0.82) was similar to that
observed in Experiment 1 (d = 0.78), despite the
considerable procedural change of separating the
two task components into distinct trials.

Regarding the Phase 2 data, an ANOVA with factors
of SOA, predictiveness, and uncertainty revealed a
main effect of SOA, F(1, 47) = 8.10, p = .007, = .15,
with faster RTs in the long SOA condition. There was
also a main effect of uncertainty, F(1, 47) = 7.40,
p = .009, = .14, and a significant Uncertainty × SOA
interaction, F(1, 47) = 18.22, p < .001, = .28. To
examine this interaction further, comparisons were
made between responses to certain and uncertain
compounds within each SOA condition. This revealed

Table 2. Experiment 2 design.

Only associative learning task Dot probe task and associative learning task

Pretraining
6 blocks × 8 trials

Phase 1
7 blocks × 16 trials

Phase 2
96 trials

p1 and n1 → R1
p1 and n2 → R1
p2 and n1 → R2
p2 and n2 → R2

p1 and n1 → R1
p1 and n2 → R1
p2 and n1 → R2
p2 and n2 → R2

Certain compound
p1 and n1 → R1

Uncertain compound
p2 and n2 → R2 (67%) / R1 (33%)

Note: p1–p2 denote cues that were predictive during pretraining and Phase 1; n1–n2 denote cues that were non-predictive. R1 and R2 denote
the correct categorization response for each cue compound (up and down, counterbalanced). During Phase 2, certain compounds are those for
which the same categorization response was correct throughout Phase 2; uncertain compounds are those for which one categorization response
was correct on two thirds of appearances in Phase 2, while the other response was correct on one third of appearances. The probe was equally
likely to appear in the location of all cues during Phase 1 and Phase 2.

Figure 3. Panel A shows the trial structure for the associative learning task (top) and the dot probe task (bottom). Feedback was provided when
participants made an error on the associative learning task (feedback screen not shown). RT = response time. Panel B shows the mean response
times, and Panel C shows the proportion of “probable outcome” responses for the associative learning task. SOA = stimulus onset asynchrony.
Error bars represent standard error of the mean. To view this figure in colour, please visit the online version of this Journal.
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that RTs were significantly faster to probes appearing
over certain compounds than to probes appearing
over uncertain compounds in the short SOA condition,
F(1, 24) = 17.76, p < .001, = .42, but that there was no
significant difference in the long SOA condition, F(1,
23) = 2.03, p = .168, = .08. No other main effects or
interactions in the omnibus ANOVA were significant
(Fs < 1.1, ps > .3, s < .03).

Dot probe task: accuracy
As in Experiment 1, we assessed whether effects
detected on the RTs to the probe were due to
speed–accuracy trade-offs. In general, the mean accu-
racy of dot probe responses was very high (M = .992,
SEM = .002). Regarding Phase 1, a 2 (SOA) × 2 (predic-
tiveness) ANOVA did not yield any significant effects
[SOA: F(1, 47) = 0.75, p = .391, = .02; predictiveness: F
(1, 47) = 3.21, p = .08, = .06; SOA × Predictiveness
interaction: F(1, 47) = 2.11, p = .153, = .04]. Note that
the marginal effect of predictiveness reflects a
pattern opposite to that expected by a speed–accu-
racy trade-off (predictive condition: M = .993, SEM
= .002; non-predictive condition: M = .989, SEM = .003).

Regarding Phase 2, since we obtained an inter-
action between SOA and uncertainty factors in the
RT results, we assessed any difference in accuracy
regarding these two factors. A 2 (SOA) × 2 (uncer-
tainty) ANOVA revealed no significant main effects
nor interactions, all Fs(1, 47)≤ 2.77, ps≥ .1, s≤ .06.

To summarize, the dot probe data fromPhase 1 repli-
cate those of Experiment 1 in showing a performance
advantage when the probe appeared in the location of
a predictive cue, rather than a non-predictive cue, but
only at the short SOA. This finding therefore offers con-
verging evidence of an influence of within-compound
differences in predictiveness on rapid attentional
capture. Moreover, Experiment 2 replicated the influ-
ence of uncertainty on dot probe RTs in Phase 2, with
slower responseswhen theprobewas cuedbyanuncer-
tain compound than by a certain compound. Impor-
tantly, these effects were observed even though the
associative learning and dot probe taskswere separated
in Experiment 2, and indeed, effect sizes were larger
than those observed in Experiment 1 despite this
change. This suggests that these effects are not a
product of response competition or response inhibition
resulting from interference between the two tasks.
Moreover, the findings of Experiment 2 results reinforce
the hypothesis that effects of predictiveness- and uncer-
tainty-driven attention occur independently of partici-
pants’ ongoing task goals.

The results of Experiment 2 differed from those of
Experiment 1 in two notable ways. First, while the
influence of uncertainty on Phase 2 dot probe
responses did not differ significantly as a function of
SOA in Experiment 1, the effect was significantly
greater at short SOA than at long SOA in Experiment
2. This discrepancy is discussed further in the
General Discussion. Secondly, Experiment 2 did not
find a significant effect of predictiveness on dot
probe responses in Phase 2. This may be a conse-
quence of reduced sensitivity in Experiment 2. Separ-
ating the tasks resulted in a general improvement in
RT performance on the dot probe task in Experiment
2 (mean RT = 426 ms, as compared to 556 ms in Exper-
iment 1). Consequently, response time may have been
nearer to floor in Experiment 2, potentially reducing
the sensitivity of the experiment to detect the more
subtle effect of predictiveness.

General discussion

Recent research suggests that the “derived attention”
first described by James (1890/1983) can modulate

Figure 4. Mean response times to the probe in Experiment 2. The
upper panel shows results in the short stimulus onset asynchrony
(SOA) condition (SOA = 250 ms); the lower panel shows results for
the long SOA condition (SOA = 1000 ms). Error bars represent stan-
dard error of the mean. To view this figure in colour, please visit the
online version of this Journal.
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the extent to which stimuli automatically capture
attention in a way that is independent of the physical
salience of those stimuli (Anderson, 2013; Awh et al.,
2012; Chelazzi et al., 2013; Le Pelley et al., 2015).
These studies have typically considered the impact
of learning about the size of the reward that is associ-
ated with stimuli. The current study instead investi-
gated the influence of learning about the variability
of outcomes that are paired with stimuli—that is,
learning about the uncertainty associated with
stimuli. Previous research and theorizing suggests
that such learning engages two related but distinct
attentional mechanisms, which we refer to as predic-
tiveness-driven (cf. Mackintosh, 1975) and uncer-
tainty-driven (cf. Pearce & Hall, 1980) processes. The
current study aimed to shed light on the nature of
these mechanisms: in particular, whether they reflect
rapid and relatively automatic, or slower and more
controlled, attentional processes.

In two experiments, attention to cues was
measured by using a dot probe task that was con-
ducted jointly with an associative learning (AL) task.
A learned predictiveness design was used for the AL
task in both experiments, in which some cues were
perfect predictors of the correct categorization
response, while other cues were non-predictive of
the correct response. Our findings replicated those
of Le Pelley et al. (2013) in demonstrating that
probes appearing in the location of predictive cues eli-
cited faster responses than probes appearing over
non-predictive cues. In a second phase, we manipu-
lated the uncertainty surrounding some compound
cues (with respect to the AL task) and observed a sig-
nificant effect on response times to probes: When
probes appeared over cues in uncertain compounds,
responses to probes were significantly slower than
when probes appeared over cues in certain com-
pounds. This novel effect of uncertainty did not inter-
act with predictiveness: Responses to probes over
cues in uncertain compounds were slow for both the
predictive and the non-predictive cues.

This pattern of results suggests that the perception
of an uncertain compound initiates a mechanism that
interferes with some of the processes needed for
responding to the dot probe task (either detecting
the probe, or executing the response). Experiment 2
assessed whether the effect of uncertainty was
mediated by an influence on response execution, by
reducing the potential for interference between the
AL and dot probe tasks. In this experiment, the AL
and dot probe tasks occurred on separate and

alternating trials, and participants were informed
which type of task was to be completed before the
trial began. To further reduce the potential interfer-
ence between the two tasks, each task had a different
set of responses, which required the use of different
hands. This manipulation was clearly successful in
reducing response interference between the two
tasks in that dot probe responses were generally
faster in Experiment 2. Under these conditions, no
effect of uncertainty was observed in the long (1000-
ms) SOA condition. This suggests that the influence
of uncertainty observed in the long SOA condition of
Experiment 1 may have been a consequence of inter-
ference between the tasks. For instance, uncertain
compounds could activate relatively slow controlled
inhibitory mechanisms with the aim of diminishing
the number of errors in the AL task. When the two
tasks were separated in Experiment 2, this inhibitory
mechanism would not have been engaged.

Importantly, an uncertainty effect was observed in
the short (250-ms) SOA condition of Experiment 2, and
the magnitude of this effect was similar to that
observed in Experiment 1. Given the separation of
the two task components and the use of distinct
motor responses (left and right hands), we argue
that this uncertainty effect is unlikely to have been
produced by response interference. The observation
of the effect in the 250-ms SOA condition suggests
instead that this attentional modulation was rapidly
and automatically initiated by the presence of the
uncertain cues. We describe this effect as automatic
in nature since orienting attention to cues was not
instructed in the dot probe task: There was no need
for participants to identify the cue stimuli in order to
respond rapidly to the probe, and furthermore partici-
pants were explicitly informed that they would gain
no advantage by doing so. In other words, the atten-
tional effects were observed despite the ongoing
task goals of the dot-probe task (to attend centrally).
The suggestion of an automatic influence is compati-
ble with Experiment 2’s finding of an effect of uncer-
tainty under a short prime–target SOA of 250 ms but
not a long SOA of 1000 ms. Previous priming exper-
iments have shown that the use of controlled
response strategies is dramatically reduced under
prime–target SOAs of 300 ms or shorter (e.g.,
Favreau & Segalowitz, 1983; Koivisto, 1997; Neely,
1977; Ortells, Fox, Noguera, & Abad, 2003; Pylkkänen
& Marantz, 2003; for a review, see Neely, 1991; for
similar results in an associative learning procedure,
see Morís, Cobos, Luque, & López, 2014). On this
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account, the pattern of dot probe responding
observed at short SOA would reflect the rapid and
automatic effect of uncertainty-driven attention. The
longer SOA would allow time for participants to use
controlled processes to move attention back to the
centre of the screen, in line with the task demands
of the dot probe task.

We have described the modulation of attention by
uncertainty as leading to an increase in attentional
allocation, but yet we observed slower response
times to probes over uncertain cues (at short SOA) in
both experiments. This raises the possibility that one
could interpret the data from the current Experiments
1 and 2 as indicating that those cues associated with
uncertainty automatically repel attention. By this
account, the slower RTs to probes on uncertain trials
are due to inattention to the cues in general.
However, this account is inconsistent with the findings
of Beesley et al. (2015), who showed (using eye track-
ing as a measure of attentional processing) that par-
ticipants spent longer looking at cues in uncertain
compounds than at cues in certain compounds; this
is the opposite of the pattern that would be expected
if cues associated with uncertainty repelled attention.

So, Beesley et al. (2015) observed enhanced orient-
ing to cues in uncertain compounds, while the current
experiments demonstrate a deficit in probe detection
for cues in uncertain compounds. How can we recon-
cile this difference, and what does this tell us about
the nature of the uncertainty-driven attentional mech-
anism? We propose that uncertain cues automatically
engage an exploratory process of information gather-
ing: When these cues appear, attention may be drawn
to novel features of the stimuli that have not been pro-
cessed in an attempt to resolve the prediction errors
that have been associated with these cues on previous
trials (producing the difference in orienting reported
by Beesley et al., 2015). Assuming that this exploratory
process must be engaged before any response actions
are initiated, this account would also explain the
increase in dot probe RTs for cues in uncertain com-
pounds observed in the current experiments. In
other words, on this account responses to the probe
were slowed down because participants’ cognitive
resources were consumed with a process of explora-
tion for new information from the cues.

Expanding on this idea, Figure 1 shows that the
shapes used as cues in these experiments differ in
two important respects. First, and most obviously,
the stimuli differed in colour. It thus seems likely
that participants used colour to distinguish

between predictive and non-predictive cues during
Phase 1. However, some shapes also differed in the
thickness of the “spikes” that projected from the
central circle, although these differences were
clearly less salient than the differences in colour
(see Wang, Yu, & Zhou, 2013). If the introduction of
uncertainty in Phase 2 did indeed promote explora-
tion of hitherto-unexplored differences in stimulus
features, it seems possible that these spikes might
constitute such features. Consistent with this idea,
previous work in categorization has shown that
changes in attention to the values of a low-salience
attribute occur only after the values of another,
more salient attribute have already been associated
with categories (Kersten, Goldstone, & Schaffert,
1998). Future experimental work will test this
account in several ways, for example by manipulat-
ing the complexity of the stimuli so as to promote
or hinder this exploratory process, or by using
forced-choice recognition tests against similar foils
to test for enhanced memory for different features
of uncertain cues.

In a sense, the effect of uncertainty on attentional
processing observed in the current experiments
might be thought of as a manifestation of the orient-
ing response (OR) to stimuli in animals (e.g., Kaye &
Pearce, 1984a, 1984b; Pearce & Kaye, 1985). The OR
was first defined by Pavlov (1927) as an investigatory
reflexive response to new stimuli. More recently it
has been shown that an OR is elicited not only to
new stimuli, but also to cues that have recently been
associated with prediction error (e.g., Kaye & Pearce,
1984a). Kaye and Pearce (1984b) also showed that
the OR operated at the level of the cue compound:
If a compound of two cues included a novel cue and
a reliable predictive cue, the OR to the compound
was weak and rapidly decreased with further training.
Thus, the influence of uncertainty found in the current
experiments could be explained as the consequence
of an automatic OR elicited by uncertain compounds.
This account can also be reconciled with the notion
that uncertain stimuli receive enhanced processing
in an information-gathering process: The initiation of
an OR would slow down any subsequent responses
since attention is focused on the processing of the
lesser known characteristics of the cues (i.e., the per-
ipheral spikes of our cues).

This account of the effect of uncertainty has
implications for attentional theories of associative
learning. In essence, we are proposing that the
experience of an associative prediction error has
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two different consequences. First, the associative
strength of the cue(s) involved will change as a
result of an error-correcting learning mechanism,
and this may lead to a reduction in the perceived sal-
ience of those cues in line with the reduction in their
predictiveness. Secondly, and probably in parallel,
experience of a prediction error will increase the like-
lihood that the agent will show an automatic OR to
stimuli (or features of the stimuli) that are less well
explored, in line with the increase in the uncertainty
regarding the predictive status of those stimuli. This
pattern of changes in attention caused by an error
signal is not easily reconciled with current attentional
theories of associative learning. For instance, dual-
process models (e.g., Le Pelley, 2004; Pearce & Mack-
intosh, 2010) incorporate two salience parameters,
one determined by learned predictiveness and the
other by uncertainty. Although the rules by which
these parameters change are different, both par-
ameters have the same effects on behaviour: They
modulate the likelihood that selective attention will
be allocated to a cue and—as a consequence—
modify the rate of learning about the cue. Thus,
both forms of attention would facilitate rapid orient-
ing to cues (which should produce rapid responses
in a dot probe task) and would also facilitate new
learning about these cues in new contexts. Our
results seem to point towards a more radical differ-
entiation between uncertainty- and predictiveness-
driven attention. The current data show that uncer-
tainty-driven attention does not facilitate rapid
responses. On the contrary, it slows down responses
because attention appears to be focused on an infor-
mation-seeking process, diverting resources away
from processing of and/or responding to other
stimuli (such as the dot probe target) appearing in
the same location. Further evidence for a distinction
between the behavioural effects of predictiveness-
driven and uncertainty-driven attention comes from
the existing literature. While demonstrations of an
influence of predictiveness-driven attention on the
rate of learning about cues are abundant, there is
very little evidence of a similar effect of uncer-
tainty-driven attention on learning rate in studies
of humans (Beesley et al., 2015; Kattner, 2015; Le
Pelley, Turnbull, Reimers, & Knipe, 2010; for a
recent review, see Le Pelley, Mitchell, et al., in
press).2 Hence, it seems that predictiveness-driven
and uncertainty-driven processes may reflect two
distinct mechanisms, which impact upon behaviour
in different ways. Specifically, we suggest that

predictiveness-driven attention is appropriately
characterized by a change in the perceived salience
of a cue, wherein more predictive cues have higher
salience, and hence are learned about more
rapidly. On the other hand, uncertainty-driven atten-
tion would increase after prediction errors and
engage the agent in a resource-limiting attentional
exploration process, where previously ignored cues
or features of the environment are attended in a
search for further information. It remains for future
research to establish whether, and if so under what
circumstances, this exploration process influences
the salience of the explored (and non-explored)
stimulus features and the rate of subsequent learn-
ing about them. It seems likely that these influences
may be moderated by such factors as stimulus com-
plexity and changes in context (for further discus-
sion, see Le Pelley, Mitchell, et al., in press).

To sum up, we have shown in the current exper-
iments that attention to cues is rapidly and automati-
cally modulated by predictiveness-driven and
uncertainty-driven attention. This constitutes a con-
siderable challenge to the usual characterization of
uncertainty-driven attentional mechanism as the
output of a controlled top-down mechanism
(Pearce & Hall, 1980). Exploration is usually con-
sidered as a volitional behaviour, a “ . . . refined
capacity, demanding careful regulation” (Daw, O’Doh-
erty, Dayan, Seymour, & Dolan, 2006, p. 876). In a
similar vein, exploratory behaviours are usually por-
trayed as voluntary actions, which “ . . . temporarily
suspend routine stimulus-based control and switch
the control of the motor apparatus from sensory to
volitional input” (Haggard, 2008, p. 938). In addition,
imaging studies have found that exploratory
actions are positively correlated with an increase in
the activity of prefrontal cortex systems (e.g., Badre,
Doll, Long, & Frank, 2012; Daw et al., 2006). Since
these areas have previously been associated with
cognitive control, these results reinforce the idea
that exploration-related behaviours are the conse-
quence of a rational, controlled decision-making
mechanism (e.g., Daw, Niv, & Dayan, 2005). Our
results for the first time challenge these ideas,
suggesting that exploration can be initiated very
rapidly and in a relatively automatic way.

Notes

1. Here, we follow recent literature (e.g., Feldmann-Wüste-
feld et al., 2015; Shone, Harris, & Livesey, 2015) in taking
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automatic as a synonym for “independent of ongoing
task goals” (see also Awh et al., 2012; Moors & De
Houwer, 2006). We also use automatic to indicate the
rapid nature of the effects (e.g., Evans, 2008). The
results that we report in this article are compatible with
these two characteristics of automaticity. However, we
note that stricter definitions of automaticity do exist.
For instance, other characterizations of automaticity
require that the effect should be not only independent
of the actual goals, but also counterproductive (Perlman
& Tzelgov, 2006). The procedures used in the current
experiments do not allow us to determine whether our
effects would still be considered automatic under such
stricter criteria.

2. Notably, studies with non-human animals provide stron-
ger evidence for an influence of uncertainty on learning
rate (e.g., Haselgrove et al., 2010; Kaye & Pearce, 1984a).
Indeed, it has been proposed that attentional mechan-
isms relating to uncertainty could differ fundamentally
across species (Haselgrove et al., 2010).
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